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Introduction

Today we will cover
e Discrete time control and the Bellman equations
e Continuous time control and the Hamilton-Jacobi-Bellman equations

e An important special case: Linear-Quadratic Gaussian and
Linear-Quadratic Regulator problems

e Pontryagin’s maximum principle
e (time allowing) Optimal Estimation and Kalman filter

This content is taken from [1, Chapter 12].



Discrete control and the Bellman equations

Define
e x € X the state of the agent's environment.
e u € U(x) the action chosen at state x.

e next(x,u) € X the resulting state from applying action u in state x

e cost(x,u) > 0 the cost of applying u in state x
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U(x) = flights available from city x

next(x, u) the city where the flight lands
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X = set of cities

U(x) = flights available from city x

next(x, u) the city where the flight lands

cost(x, u) price of the flight

Goal: find cheapest way to get to your destination
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Define
e x € X the state of the agent's environment.
e u € U(x) the action chosen at state x.
e next(x,u) € X the resulting state from applying action u in state x
e cost(x,u) > 0 the cost of applying v in state x

Goal: find action sequence (u, ..., u,—1) minimizing the total cost

n—1
J(x.,u) = Z cost (X, Uk)
k=0

where xy11 = next(xk, ux), and xp and x, given.
e We can think of this as a graph where nodes are states, and actions
are arrows connecting the nodes.



Discrete Control and the Bellman Equations

Goal: find action sequence (u, ..., u,—1) minimizing the total cost

n—1
J(x.,u) = Z cost(xk, Uk)
k=0



Discrete Control and the Bellman Equations

Goal: find action sequence (u, ..., u,—1) minimizing the total cost

n—1
J(x.,u) = Z cost(xk, Uk)
k=0

We need a control law, namely a mapping from states to actions.



Discrete Control and the Bellman Equations

Goal: find action sequence (u, ..., u,—1) minimizing the total cost

n—1
J(x.,u) = Z cost(xk, Uk)
k=0

We need a control law, namely a mapping from states to actions.
Defining the optimal value function as

v(x) = U?L;?X) {cost(x, u) + v(next(x,u))} (1)

the associated optimal control law is

7(x) = arg min { cost(x, u) + v(next(x, u))} (2)
uelU(x)



Discrete Control and the Bellman Equations

Goal: find action sequence (u, ..., u,—1) minimizing the total cost

n—1
J(x.,u) = Z cost(xk, Uk)
k=0

We need a control law, namely a mapping from states to actions.
Defining the optimal value function as

v(x) = U?L;?X) {cost(x, u) + v(next(x,u))} (1)

the associated optimal control law is

7(x) = arg min { cost(x, u) + v(next(x, u))} (2)
uelU(x)

Those are the Bellman equations.
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Discrete Control and the Bellman Equations

We want to solve

v(x) = uénbj?x) {cost(x, u) + v(next(x, u))}

7(x) = arg min { cost(x, u) + v(next(x, u))}
u€U(x)
Let’s go back to the graph analogy. Assume the graph is acyclic.
Suppose we start at xg and want to reach xr.
e set v(xr) =0

e once every successor of a state x has been visited, apply the formula
for v to x.
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e For cyclic graphs, this approach will not work.
e The Bellman equations are still valid.

e need to design iterative schemes: Value lteration and Policy
Iteration
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Value Iteration proceeds as follows:
e start with some guess v(?) of the optimal value function.

e construct a sequence of guesses

v(i+1)(x) = mul? ) {cost(x, u) + V(i)(HGXt(Xa U))}
uel(x

This algorithm can be shown to converge at a linear rate [2].
Each iteration costs O(|X||U]).
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Policy Iteration proceeds as follows:
e start with some guess 7(%) of the optimal law.

e construct a sequence of guesses

O]

v (x) = cost(x, 7D (x)) + v (next(x, 7(x))

7H(x) = arg min { cost(x, u) + v (next(x, u))}
ueU(x)

Need to relax the first line or solve a system of linear equations.
Under certain assumptions, this is faster than value iteration [3].
However each iteration is more costly.
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e The Bellman equation for the optimal control law becomes
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Discrete Control and the Bellman equations

It is also of interest to consider the stochastic setting where we have

p(y | x, u) =" probability that next(x, u) = y”
e The Bellman equation for the optimal control law becomes

7(x) = arg min { cost(x, u) + E[v(next(x, u))] }
ueU(x)

everything we have seen so far generalizes to this setting.

e This is called a Markov Decision Process (MDP)

10



Continuous Control

e State x € R™ and actions u € U(x) C R™ are real-valued vectors.
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Continuous Control

e State x € R™ and actions u € U(x) C R™ are real-valued vectors.

e Assume that our trajectory is given by
dx = f(x, u)dt + F(x, u)dw

where dw is n,,-dimensional Brownian motion. We can also write
the previous as

ot

x(t) = x(0) + ./o f(x(s), u(s))ds + /0 F(x(s), u(s))dw(s)

e Discretizing this into time steps of size A, i.e. t = kA, gives
Xk+1 = Xk + Af(Xk, Uk) + \/ZF(X;(, Uk)Ek (3)

where e, ~ N(0,1I™) and xx = x(kA).
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Continuous Control

We also need a cost function.

For now assume finite horizon-problems, i.e. a final time tf is
specified.

Separate the total cost into cost rate £ and final cost h.

Total cost is then

W 1) = h(x(tf))+/0fé(x(t),u(t),t)dt

Discretizing this gives

n—1

J(x.,u.) = h(x,) + AZE(Xk, Uk, kD) (4)
k=0

where n = t¢/A.
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Continuous Control

e To summarize, we have
Xk+1 = Xk + Af(Xk, uk) + \/ZF(X/(, uk)ek (5)
with e, ~ N(0,1™), and

n—1
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Xk+1 = Xk + AF (xi, ug) + €
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Continuous Control

e To summarize, we have
Xk+1 = Xk + Af(Xk, uk) + \/ZF(X/(, uk)ek (5)
with e, ~ N(0,1™), and

n—1

I, ) = h(xa) + A (X, e, KA) (6)
k=0
e From (5) we can see that
Xpr1 = Xk + AF(xk, uk) + €
where & ~ N'(0, AS(xk, ux)) and S(x, u) = F(x,u)F(x,u)T.
e With this we can define the optimal value function similarly
v(x, k) = min {Al(x,u, kD) + E[v(x + Af(x,u) + &, k+1)]}
(7)
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Continuous Control

o We will simplify E[v(x + Af(x, u) +&)].
e Setting § = Af(x,u) + &, Taylor expansion gives

v(x +6) = v(x) + 8 Tve(x) + %5TVXX(X)(5 + 0(8%)
e Then
E[v(x + 6)] = v(x) + AF(x, u) T ve(x) + %E[fTVXX(X)f] + o(A?)

e Now,

E[¢Tvit] = E[tr(£7 vinf)]
= E[tr(¢¢7 viod)]
tr(Cov[{]vXX)
tr(ASvXX)

14



Continuous control

Going back to
v(x, k) = min {AL(x, u, kA) + E[v(x + Af(x,u) + € k + 1)] }
and with
E[v(x + 6)] = v(x) + AF(x, u) v (x) + %tr(AS(x, ) v (X)) + 0o(A2)

we get

v(x, k) —v(x, k+1)
A

=min{l+ v+ %tr(SVXX)}

15



Continuous Control

v(x, k) — v(x, k+1)
A
and recall that k in v(x, k) represents time kA, so that the LHS is

=min{{+fTv + %tr(SvXX)}

v(x,t) —v(x, t+ A)
A

As A — 0, this is —%v, which we denote —v;. So for v(x, tr) = h(x)

and 0 < t < tr, we have

1
—vi(x,t) = mln {e(x, u, t) + F(x, u) Tvi(x) + 2tr(5(x, u)vex(x))}  (8)
and the associated optimal control law

m(x,t) = arg:nin {00x, u, ) + F(x, u) Tvie(x) + %tl’(S(X7 u)vi(x))} (9)
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v(x, k) — v(x, k+1)
A
and recall that k in v(x, k) represents time kA, so that the LHS is

=min{{+fTv + %tr(SvXX)}

v(x,t) —v(x, t+ A)
A

As A — 0, this is —%v, which we denote —v;. So for v(x, tr) = h(x)

and 0 < t < tr, we have

—vi(x,t) = mln {e(x, u, t) + F(x, u) Tvi(x) + ;tl’(S(X, u)vex(x))}  (8)
and the associated optimal control law
m(x,t) = arg:nin {00x, u, ) + F(x, u) Tvie(x) + %tl’(S(X7 u)vi(x))} (9)

Those are the Hamilton-Jacobi-Bellman (HJB) equations.
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Continuous Control: solve the HJB Equations

—ve(x,t) = muin {€(x,u, t) + f(x, u) Tve(x) + %tr(S(x, u)vix (x)) }

with v(x, tr) = h(x).

e Non-linear second-order PDE.
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Continuous Control: solve the HJB Equations

—ve(x,t) = muin {€(x,u, t) + f(x, u) Tve(x) + %tr(S(x, u)vix (x)) }

with v(x, tr) = h(x).
e Non-linear second-order PDE.
e May not have a classic solution
e numerical methods relying on "viscosity” exist
e suffers from " curse of dimensionality”

e several methods for approximate solutions exist and work well in

practice.

17



Continuous Control: Infinite Horizon

Two infinite-horizon costs used in practice:

e Discounted cost formulation
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Continuous Control: Infinite Horizon

Two infinite-horizon costs used in practice:

e Discounted cost formulation

e Average cost per stage formulation

tr

Sy u) = lim = [ o(x(t), u(t))dt

tr— o0 tf 0

Both those formulations bring similar HJB equations, except that they do
not depend on time.

In that sense they are easier to solve using numerical approximations.
However the finite-horizon problem also advantages.

18



Linear-Quadratic-Gaussian co

e An important class of optimal control problems

e unlike many other problems, it is possible to find a closed-form
formula

e we will derive solutions in both the continuous and discrete cases

19



LQG: the Continuous Case

We make the following assumptions
e dynamics: dx = (Ax + Bu)dt + Fdw
e cost rate: {(x,u) = Ju” Ru+ 3x" Qx
e final cost: h(x) = 2x"Q"x

where R, Q and Qf are symmetric, R is positive definite, and set
S=FFT.
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LQG: the Continuous Case

We make the following assumptions

e dynamics: dx = (Ax + Bu)dt + Fdw

e cost rate: {(x,u) = Ju” Ru+ 3x" Qx

e final cost: h(x) = 2x"Q"x
where R, Q and Qf are symmetric, R is positive definite, and set
S=FFT.
Recall the HJB equation

1
—ve(x, t) = min {€(x, u, t) + £(x, u) Tve(x) + Etr(S(x, u)vex(x)) }

with v(x, tr) = h(x).
In our case it reads

—ve(x,t) = min {%UTRU + %XTQX + (Ax + Bu) T v (x) + %tr(SvXX(X))}

with v(x, tr) = 2x7 Q'x

20



LQG: the Continous Case

1 1 1
—ve(x, t) = min {EUTRU + EXTQX + (Ax + BU)TVX(X) + Etr(SvXX(x))}

e We make the following guess: v(x,t) = $x7 V(t)x + a(t)
e the derivatives in the HJB equations are

o vi(x,t) = IxTV(t)x + a(t)

o vi(x) = V()x

o v (x) = V(t)

21



LQG: the Continuous Case

Plugging back into the HJB equation gives

—ve(x,t) = muin {%UTRU + %XTQX + (Ax + Bu) T V(t)x + %tr(SV(t))}
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Plugging back into the HJB equation gives
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This is simply a quadratic in u, whose minimizer is
vt =—-RIBTV(t)x
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vt =—-RIBTV(t)x
and thus
—vi(x, t) = %XT(Q +ATV(t) + V(t)A— V(t)BR'BT V(t))x + %tr(SV(t))
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LQG: the Continuous Case

Plugging back into the HJB equation gives
—ve(x,t) = muin {%UTRU + %XTQX + (Ax + Bu) T V(t)x + %tr(SV(t))}
This is simply a quadratic in u, whose minimizer is
vt =—-RIBTV(t)x
and thus
—vi(x, t) = %XT(Q +ATV(t) + V(t)A— V(t)BR'BT V(t))x + %tr(SV(t))
Because v¢(x,t) = %XTV(t)X + a(t), this gives
—V(t) = @+ ATV(t) + V(t)A— V(t)BRIBT V(t) (10)
—a(t) = %tr(SV(t))

This is a continuous-time Riccati equation.
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LQG: the Continuous Case

—V(t) = Q@+ ATV(t) + V(t)A— V(t)BRIBT V(1)
() = %tr(SV(t))

The boundary conditions v(x, tr) = $x7 Q"x imply that V(tr) = Q" and
a(tf) =1}
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LQG: the Continuous Case

—V(t) = Q@+ ATV(t) + V(t)A— V(t)BRIBT V(1)
1
—a(t) = 5tr(SV(t))
The boundary conditions v(x, tr) = $x7 Q"x imply that V(tr) = Q" and
a(tf) =1}

= This is a simple ODE, which is easy to solve.
The optimal control law is given by

u* = —RIBTV(t)x

e |t does not depend on the noise.

e |t remains the same in the deterministic case, called the
linear-quadratic regulator.

23



LQR: the Discrete Case

We make the following assumptions
e dynamics: xx+1 = Axx + Buyg
o cost: (xy, ux) = %UZRUk + %kaka
e final cost: h(x,) = 1x] Q"x,

where R, Q and Qf are symmetric, R is positive definite, and set
S=FFT.
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LQR: the Discrete Case

We make the following assumptions
e dynamics: xx+1 = Axx + Buyg
o cost: (xy, ux) = %UZRUk + %kaka
e final cost: h(x,) = 1x] Q"x,

where R, Q and Qf are symmetric, R is positive definite, and set
S=FFT.
Recall the Bellman equation

v(x, k) = muin {€(x.u, k) + v(next(x, u, k))}

with v(x,) = h(x,).
Again we make the assumption that

1
v(x, k) = EXTVkX
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LQR: the Discrete Case

The boundary constraint gives V, = Qf.
Plugging everything gives

1 1 1
%XTka = min {EUTRLI + ixTQX + §(Ax + Bu)" Vi1 (Ax + Bu)}

25



LQR: the Discrete Case

The boundary constraint gives V, = Qf.
Plugging everything gives

1 1 1 1
§XTka = min {EUTRLI + ixTQX + §(Ax + Bu)" Vi1 (Ax + Bu)}
This is simply a quadratic in u, and we get

Vi = Q+ AT Vi1A— ATVi1B(R + BT Vi1 B) 'BT Vi A

which is a discrete-time Ricatti equation and the associated optimal
control law

ug = —Lka
where Ly = (R+ B V;;1B) Vi1 1A
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LQR: the Discrete Case

Vi=Q+ ATV A— ATVk+lB(R + BTVk+1B)_lBTVk+1A

e Start with V, = Qf and iterate backwards

e Can be computed offline
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Deterministic Control: Pontryagin’s Maximum Principle

Another approach to optimal control theory

developped in the Soviet Union by Pontryagin

only applies for deterministic problems.

avoids the curse of dimensionality.

applies for both continuous and discrete time.
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Pontryagin’s Maximum Principle: The Continuous Case

Setting:
e dynamics: dx = f(x(t), u(t))dt
e cost rate: ¢(x(t), u(t), t)
e final cost: h(x(tr))

with fixed xp and final time tr.
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Pontryagin’s Maximum Principle: The Continuous Case

Setting:
e dynamics: dx = f(x(t), u(t))dt
e cost rate: ¢(x(t), u(t), t)
e final cost: h(x(tr))

with fixed xp and final time tr.
Recall the HJB equation

—vi(x,t) = muin {e(x, u t) + F(x, u) Tvi(x) + %tr(S(x, u)vix (x)) }
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Pontryagin’s Maximum Principle: The Continuous Case

Setting:
e dynamics: dx = f(x(t), u(t))dt
e cost rate: ¢(x(t), u(t), t)
e final cost: h(x(tr))

with fixed xp and final time tr.
Recall the HJB equation

1
—ve(x, t) = min {€(x, u, t) + F(x, u) Tvi(x) + Etr(S(x, u)vix (x)) }
u
Because we are in the deterministic case we have

—wvi(x, t) = muin {e(x, u, t) + F(x, u) T ve(x)}
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Pontryagin’s Maximum Principle: The Continuous Case

Setting:
e dynamics: dx = f(x(t), u(t))dt
e cost rate: ¢(x(t), u(t), t)
e final cost: h(x(tr))

with fixed xp and final time tr.
Recall the HJB equation

—vi(x,t) = muin {e(x, u t) + F(x, u) Tvi(x) + %tr(S(x, u)vix (x)) }
Because we are in the deterministic case we have
—wvi(x, t) = muin {e(x, u, t) + F(x, u) T ve(x)}
Suppose optimal control law is given by u = m(x, t)

28



Pontryagin’s Maximum Principle: The Continuous Case

—vi(x, t) = £(x, m(x, t), t) + F(x, 7(x, 1)) T vi(x, t)
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Pontryagin’s Maximum Principle: The Continuous Case

—vi(x, t) = £(x, m(x, t), t) + F(x, 7(x, 1)) T vi(x, t)
Taking derivatives w.r.t. x

0=vy + 4+ 7TXT€L, + fXTvX + ﬂXTfuTvX + Ve
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Pontryagin’s Maximum Principle: The Continuous Case

—vi(x, t) = £(x, m(x, t), t) + F(x, 7(x, 1)) T vi(x, t)
Taking derivatives w.r.t. x
0= vy +0x+ 7TXT€L, + fXTvX + ﬂXTfuTvX + Vi
Observe that vy = VX + Vix = Vi f + Vi,

0=v + 0+ v +a](l,+ £ v)
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Pontryagin’s Maximum Principle: The Continuous Case

—vi(x, t) = £(x, m(x, t), t) + F(x, 7(x, 1)) T vi(x, t)
Taking derivatives w.r.t. x
0= vy +0x+ 7TXT€L, + fXTvX + ﬂXTfuTvX + Vi
Observe that vy = VX + Vix = Vi f + Vi,
0=y + b+ £ v+ ] (bu+ £, vs)

Observe that £, + £, vy = £,(x, m(x, t), t) + fu(x, 7(x, t)) T va(x, t)
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Pontryagin’s Maximum Principle: The Continuous Case

—vi(x, t) = £(x, m(x, t), t) + F(x, 7(x, 1)) T vi(x, t)
Taking derivatives w.r.t. x
0= vy +0x+ 7TXT€L, + fXTvX + ﬂXTfuTvX + Vi
Observe that vy = VX + Vix = Vi f + Vi,
0=y + b+ £ v+ ] (bu+ £, vs)

Observe that £, + f,] vy = £,(x, 7(x, t), t) + fu(x, 7(x, t)) T vi(x, t)= 0
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Pontryagin’s Maximum Principle: The Continuous Case

We then get

—x(x, t) = fi(x, 7(x, t))TVX(X, t) + Le(x, m(x, t), t)
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Pontryagin’s Maximum Principle: The Continuous Case

We then get

Setting p = v, this gives

—p(t) = fi(x, 7(x, )T p(t) + Le(x, 7(x, t), t)
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Pontryagin’s Maximum Principle: The Continuous Case

We then get

Setting p = v, this gives
—p(t) = fi(x, 7(x, )T p(t) + Le(x, 7(x, t), t)
The maximum principle thus reads
x(t) = £(x(t), u(t))
5(t) = £,

—B(t) = filx(t), u(t)) " p(t) + Le(x(t), u(t), t)
u(t) = arg;nin {e(x(t), u, t) + f(x(t),u) " p(t)}

with boundary conditions p(tr) = vk (x(tr), tr) = he(x(tf)), and xo, tf
given.
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Pontryagin’s Maximum Principle: The Continuous Case

Setting the Hamiltonian H(x, u, p, t) := {(x, u, t) + f(x,u) " p, the
maximum principle reads
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Pontryagin’s Maximum Principle: The Continuous Case

Setting the Hamiltonian H(x, u, p, t) := {(x, u, t) + f(x,u) " p, the
maximum principle reads

x(t) = f(x(t), u(t))

with p(tr) = he(x(tf))

e Simple ODE, cost grows linearly with n,
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Pontryagin’s Maximum Principle: The Continuous Case

Setting the Hamiltonian H(x, u, p, t) := {(x, u, t) + f(x,u) " p, the
maximum principle reads

x(t) = f(x(t), u(t))

with p(tr) = hx(x(tr))
e Simple ODE, cost grows linearly with n,
e existing software packages to solve

e Only issue is to solve for the Hamiltonian
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Pontryagin’s Maximum Principle: The Continuous Case

Setting the Hamiltonian H(x, u, p, t) := {(x, u, t) + f(x,u) " p, the
maximum principle reads

x(t) = f(x(t), u(t))

with p(tr) = hx(x(tr))
e Simple ODE, cost grows linearly with n,
e existing software packages to solve
e Only issue is to solve for the Hamiltonian
e For problems where the dynamic is linear and the cost is quadratic

w,r.t. the control u, a nice closed form formula exists.
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Pontryagin’s Maximum Principle: The Discrete Case

e Derivation in the continuous and discrete case is also possible using
Lagrange multipliers

e Optimization using gradient descent is possible in the discrete case
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Optimal Estimation and the Kalman Filter

e Goal: From a sequence of noisy measurements, estimate the true
dynamics.
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e Goal: From a sequence of noisy measurements, estimate the true
dynamics.

e Intimately tied to the problem of optimal control

33



Optimal Estimation and the Kalman Filter

e Goal: From a sequence of noisy measurements, estimate the true
dynamics.

e Intimately tied to the problem of optimal control

dynamics: xx11 = Axx + wi

observation: y, = Hxy + v

where wx ~ N(0, S) and vk ~ N (0, P), xo ~ N (%, X0), and
A H,S, P, X, Lo are known.
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Optimal Estimation and the Kalman Filter

e Goal: From a sequence of noisy measurements, estimate the true
dynamics.

e Intimately tied to the problem of optimal control
dynamics: xx11 = Axx + wi
observation: y, = Hxy + v

where wy ~ N (0,S) and vx ~ N(0, P), xo ~ N (X0, X0), and
A H,S, P, X, Lo are known.
= Goal: estimate the probability distribution of xx given yo, ..., yk—1:

P = P(Xk | Yoi- -3 Yk—1)
po = N (%0, Xo)

33



Optimal Estimation and the Kalman Filter

Using properties of multivariate Gaussian, it can be shown that

Prr1 = P(Xk41 | Yo, -+ -5 ¥k) ~ N (Rug1, Lg1)
where
Riy1 = AR + ALHT (P + HE HT) (v — HR) (11)
and

Y1 =S+ A AT — AL HT(P+ HE HTY THE, AT 12
+
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Optimal Estimation and the Kalman Filter

Using properties of multivariate Gaussian, it can be shown that
Pr+r = P(Xi+1 | Yo, - - ¥i) ~ N (Rie+1, Thta)
where
Riy1 = AR + ALHT (P + HE HT) (v — HR) (11)
and

Yir1=S+HALAT — AL HT(P+ HEHT) T THE, AT (12)

This is the Kalman filter.
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Optimal Estimation and the Kalman Filter

Using properties of multivariate Gaussian, it can be shown that

Pri1 = P(Xkg1 | Yo, -5 yk) ~ N()?klev Yki1)

where
Rhr1 = ARk + AL HT (P + HEZ HT) M yh — HRy) (11)
and

Yir1=S+HALAT — AL HT(P+ HEHT) T THE, AT (12)

This is the Kalman filter.
Recall the Riccati equation for LQR

Vi=Q+ATViiA— ATV 1 B(R+ BT Vi1 B) 'BT Vi A
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Conclusion

What we covered today

e Bellman equations and dynamic programming
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Conclusion

What we covered today
e Bellman equations and dynamic programming
e Hamilton-Jacobi-Bellman equations

e Linear-Quadratic-Gaussian, Linear-Quadratic regulator and the
Riccati equations

e Pontryagin’s maximum principle
e Kalman Filter
What we didn’t cover
e solving non-linear optimal problem using linear relaxation

e duality between optimal control and optimal estimation

35



Any questions?



Thank youl!



References

[1] Kenji Doya, Shin Ishii, Alexandre Pouget, and Rajesh PN Rao.
Bayesian brain: Probabilistic approaches to neural coding. MIT press,
2007.

[2] A. Heydari. Revisiting approximate dynamic programming and its
convergence. |EEE Transactions on Cybernetics, 44(12):2733-2743,
2014,

[3] Ali Heydari. Convergence analysis of policy iteration. CoRR,
abs/1505.05216, 2015. URL http://arxiv.org/abs/1505.05216.

36


http://arxiv.org/abs/1505.05216

	References

