Optimal Control Theory

Benjamin Dubois-Taine

July 22, 2020
The University of British Columbia

Introduction

Today we will cover

- Discrete time control and the Bellman equations

Introduction

Today we will cover

- Discrete time control and the Bellman equations
- Continuous time control and the Hamilton-Jacobi-Bellman equations

Introduction

Today we will cover

- Discrete time control and the Bellman equations
- Continuous time control and the Hamilton-Jacobi-Bellman equations
- An important special case: Linear-Quadratic Gaussian and Linear-Quadratic Regulator problems

Introduction

Today we will cover

- Discrete time control and the Bellman equations
- Continuous time control and the Hamilton-Jacobi-Bellman equations
- An important special case: Linear-Quadratic Gaussian and Linear-Quadratic Regulator problems
- Pontryagin's maximum principle

Introduction

Today we will cover

- Discrete time control and the Bellman equations
- Continuous time control and the Hamilton-Jacobi-Bellman equations
- An important special case: Linear-Quadratic Gaussian and Linear-Quadratic Regulator problems
- Pontryagin's maximum principle
- (time allowing) Optimal Estimation and Kalman filter

Introduction

Today we will cover

- Discrete time control and the Bellman equations
- Continuous time control and the Hamilton-Jacobi-Bellman equations
- An important special case: Linear-Quadratic Gaussian and Linear-Quadratic Regulator problems
- Pontryagin's maximum principle
- (time allowing) Optimal Estimation and Kalman filter

This content is taken from [1, Chapter 12].

Discrete control and the Bellman equations

Define

- $x \in \mathcal{X}$ the state of the agent's environment.
- $u \in \mathcal{U}(x)$ the action chosen at state x.
- $\operatorname{next}(x, u) \in \mathcal{X}$ the resulting state from applying action u in state x
- $\operatorname{cost}(x, u) \geq 0$ the cost of applying u in state x

Example: plane tickets

- $\mathcal{X}=$ set of cities
- $\mathcal{U}(x)=$ flights available from city x
- next (x, u) the city where the flight lands
- $\operatorname{cost}(x, u)$ price of the flight

Example: plane tickets

- $\mathcal{X}=$ set of cities
- $\mathcal{U}(x)=$ flights available from city x
- next (x, u) the city where the flight lands
- $\operatorname{cost}(x, u)$ price of the flight

Goal: find cheapest way to get to your destination

Discrete Control and the Bellman Equations

Define

- $x \in \mathcal{X}$ the state of the agent's environment.
- $u \in \mathcal{U}(x)$ the action chosen at state x.
- $\operatorname{next}(x, u) \in \mathcal{X}$ the resulting state from applying action u in state x
- $\operatorname{cost}(x, u) \geq 0$ the cost of applying u in state x

Goal: find action sequence $\left(u_{0}, \ldots, u_{n-1}\right)$ minimizing the total cost

$$
J\left(x ., u^{\prime}\right)=\sum_{k=0}^{n-1} \cos t\left(x_{k}, u_{k}\right)
$$

where $x_{k+1}=\operatorname{next}\left(x_{k}, u_{k}\right)$, and x_{0} and x_{n} given.

Discrete Control and the Bellman Equations

Define

- $x \in \mathcal{X}$ the state of the agent's environment.
- $u \in \mathcal{U}(x)$ the action chosen at state x.
- $\operatorname{next}(x, u) \in \mathcal{X}$ the resulting state from applying action u in state x
- $\operatorname{cost}(x, u) \geq 0$ the cost of applying u in state x

Goal: find action sequence $\left(u_{0}, \ldots, u_{n-1}\right)$ minimizing the total cost

$$
J\left(x ., u^{\prime}\right)=\sum_{k=0}^{n-1} \cos t\left(x_{k}, u_{k}\right)
$$

where $x_{k+1}=\operatorname{next}\left(x_{k}, u_{k}\right)$, and x_{0} and x_{n} given.

- We can think of this as a graph where nodes are states, and actions are arrows connecting the nodes.

Discrete Control and the Bellman Equations

Goal: find action sequence $\left(u_{0}, \ldots, u_{n-1}\right)$ minimizing the total cost

$$
J\left(x ., u^{\prime}\right)=\sum_{k=0}^{n-1} \operatorname{cost}\left(x_{k}, u_{k}\right)
$$

Discrete Control and the Bellman Equations

Goal: find action sequence $\left(u_{0}, \ldots, u_{n-1}\right)$ minimizing the total cost

$$
J(x ., u .)=\sum_{k=0}^{n-1} \operatorname{cost}\left(x_{k}, u_{k}\right)
$$

We need a control law, namely a mapping from states to actions.

Discrete Control and the Bellman Equations

Goal: find action sequence $\left(u_{0}, \ldots, u_{n-1}\right)$ minimizing the total cost

$$
J(x ., u .)=\sum_{k=0}^{n-1} \operatorname{cost}\left(x_{k}, u_{k}\right)
$$

We need a control law, namely a mapping from states to actions.
Defining the optimal value function as

$$
\begin{equation*}
v(x)=\min _{u \in \mathcal{U}(x)}\{\operatorname{cost}(x, u)+v(\operatorname{next}(x, u))\} \tag{1}
\end{equation*}
$$

the associated optimal control law is

$$
\begin{equation*}
\pi(x)=\underset{u \in \mathcal{U}(x)}{\arg \min }\{\operatorname{cost}(x, u)+v(\operatorname{next}(x, u))\} \tag{2}
\end{equation*}
$$

Discrete Control and the Bellman Equations

Goal: find action sequence $\left(u_{0}, \ldots, u_{n-1}\right)$ minimizing the total cost

$$
J(x ., u .)=\sum_{k=0}^{n-1} \operatorname{cost}\left(x_{k}, u_{k}\right)
$$

We need a control law, namely a mapping from states to actions.
Defining the optimal value function as

$$
\begin{equation*}
v(x)=\min _{u \in \mathcal{U}(x)}\{\operatorname{cost}(x, u)+v(\operatorname{next}(x, u))\} \tag{1}
\end{equation*}
$$

the associated optimal control law is

$$
\begin{equation*}
\pi(x)=\underset{u \in \mathcal{U}(x)}{\arg \min }\{\operatorname{cost}(x, u)+v(\operatorname{next}(x, u))\} \tag{2}
\end{equation*}
$$

Those are the Bellman equations.

Discrete Control and the Bellman Equations

We want to solve

$$
\begin{aligned}
& v(x)=\min _{u \in \mathcal{U}(x)}\{\operatorname{cost}(x, u)+v(\operatorname{next}(x, u))\} \\
& \pi(x)=\underset{u \in \mathcal{U}(x)}{\arg \min }\{\operatorname{cost}(x, u)+v(\operatorname{next}(x, u))\}
\end{aligned}
$$

Discrete Control and the Bellman Equations

We want to solve

$$
\begin{aligned}
& v(x)=\min _{u \in \mathcal{U}(x)}\{\operatorname{cost}(x, u)+v(\operatorname{next}(x, u))\} \\
& \pi(x)=\underset{u \in \mathcal{U}(x)}{\arg \min }\{\operatorname{cost}(x, u)+v(\operatorname{next}(x, u))\}
\end{aligned}
$$

Let's go back to the graph analogy. Assume the graph is acyclic. Suppose we start at x_{0} and want to reach x_{f}.

Discrete Control and the Bellman Equations

We want to solve

$$
\begin{aligned}
& v(x)=\min _{u \in \mathcal{U}(x)}\{\operatorname{cost}(x, u)+v(\operatorname{next}(x, u))\} \\
& \pi(x)=\underset{u \in \mathcal{U}(x)}{\arg \min }\{\operatorname{cost}(x, u)+v(\operatorname{next}(x, u))\}
\end{aligned}
$$

Let's go back to the graph analogy. Assume the graph is acyclic.
Suppose we start at x_{0} and want to reach x_{f}.

- set $v\left(x_{f}\right)=0$
- once every successor of a state x has been visited, apply the formula for v to x.

Discrete Control and the Bellman Equations

- For cyclic graphs, this approach will not work.

Discrete Control and the Bellman Equations

- For cyclic graphs, this approach will not work.
- The Bellman equations are still valid.

Discrete Control and the Bellman Equations

- For cyclic graphs, this approach will not work.
- The Bellman equations are still valid.
- need to design iterative schemes: Value Iteration and Policy Iteration

Discrete Control and the Bellman Equations

Value Iteration proceeds as follows:

- start with some guess $v^{(0)}$ of the optimal value function.

Discrete Control and the Bellman Equations

Value Iteration proceeds as follows:

- start with some guess $v^{(0)}$ of the optimal value function.
- construct a sequence of guesses

$$
v^{(i+1)}(x)=\min _{u \in \mathcal{U}(x)}\left\{\operatorname{cost}(x, u)+v^{(i)}(\operatorname{next}(x, u))\right\}
$$

Discrete Control and the Bellman Equations

Value Iteration proceeds as follows:

- start with some guess $v^{(0)}$ of the optimal value function.
- construct a sequence of guesses

$$
v^{(i+1)}(x)=\min _{u \in \mathcal{U}(x)}\left\{\operatorname{cost}(x, u)+v^{(i)}(\operatorname{next}(x, u))\right\}
$$

This algorithm can be shown to converge at a linear rate [2].

Discrete Control and the Bellman Equations

Value Iteration proceeds as follows:

- start with some guess $v^{(0)}$ of the optimal value function.
- construct a sequence of guesses

$$
v^{(i+1)}(x)=\min _{u \in \mathcal{U}(x)}\left\{\operatorname{cost}(x, u)+v^{(i)}(\operatorname{next}(x, u))\right\}
$$

This algorithm can be shown to converge at a linear rate [2]. Each iteration costs $O(|\mathcal{X}||\mathcal{U}|)$.

Discrete Control and the Bellman Equations

Policy Iteration proceeds as follows:

- start with some guess $\pi^{(0)}$ of the optimal law.

Discrete Control and the Bellman Equations

Policy Iteration proceeds as follows:

- start with some guess $\pi^{(0)}$ of the optimal law.
- construct a sequence of guesses

$$
\begin{aligned}
& v^{\pi^{(i)}}(x)=\operatorname{cost}\left(x, \pi^{(i)}(x)\right)+v^{\pi^{(i)}}\left(\operatorname{next}\left(x, \pi^{(i)}(x)\right)\right. \\
& \pi^{(i+1)}(x)=\underset{u \in \mathcal{U}(x)}{\arg \min }\left\{\operatorname{cost}(x, u)+v^{\pi^{(i)}}(\operatorname{next}(x, u))\right\}
\end{aligned}
$$

Discrete Control and the Bellman Equations

Policy Iteration proceeds as follows:

- start with some guess $\pi^{(0)}$ of the optimal law.
- construct a sequence of guesses

$$
\begin{aligned}
& v^{\pi^{(i)}}(x)=\operatorname{cost}\left(x, \pi^{(i)}(x)\right)+v^{\pi^{(i)}}\left(\operatorname{next}\left(x, \pi^{(i)}(x)\right)\right. \\
& \pi^{(i+1)}(x)=\underset{u \in \mathcal{U}(x)}{\arg \min }\left\{\operatorname{cost}(x, u)+v^{\pi^{(i)}}(\operatorname{next}(x, u))\right\}
\end{aligned}
$$

Need to relax the first line or solve a system of linear equations.

Discrete Control and the Bellman Equations

Policy Iteration proceeds as follows:

- start with some guess $\pi^{(0)}$ of the optimal law.
- construct a sequence of guesses

$$
\begin{aligned}
& v^{\pi^{(i)}}(x)=\operatorname{cost}\left(x, \pi^{(i)}(x)\right)+v^{\pi^{(i)}}\left(\operatorname{next}\left(x, \pi^{(i)}(x)\right)\right. \\
& \pi^{(i+1)}(x)=\underset{u \in \mathcal{U}(x)}{\arg \min }\left\{\operatorname{cost}(x, u)+v^{\pi^{(i)}}(\operatorname{next}(x, u))\right\}
\end{aligned}
$$

Need to relax the first line or solve a system of linear equations. Under certain assumptions, this is faster than value iteration [3].

Discrete Control and the Bellman Equations

Policy Iteration proceeds as follows:

- start with some guess $\pi^{(0)}$ of the optimal law.
- construct a sequence of guesses

$$
\begin{aligned}
& v^{\pi^{(i)}}(x)=\operatorname{cost}\left(x, \pi^{(i)}(x)\right)+v^{\pi^{(i)}}\left(\operatorname{next}\left(x, \pi^{(i)}(x)\right)\right. \\
& \pi^{(i+1)}(x)=\underset{u \in \mathcal{U}(x)}{\arg \min }\left\{\operatorname{cost}(x, u)+v^{\pi^{(i)}}(\operatorname{next}(x, u))\right\}
\end{aligned}
$$

Need to relax the first line or solve a system of linear equations. Under certain assumptions, this is faster than value iteration [3]. However each iteration is more costly.

Discrete Control and the Bellman equations

- It is also of interest to consider the stochastic setting where we have

$$
p(y \mid x, u)=" \text { probability that } \operatorname{next}(x, u)=y "
$$

Discrete Control and the Bellman equations

- It is also of interest to consider the stochastic setting where we have

$$
p(y \mid x, u)=" \text { probability that } \operatorname{next}(x, u)=y "
$$

- The Bellman equation for the optimal control law becomes

$$
\pi(x)=\underset{u \in \mathcal{U}(x)}{\arg \min }\{\operatorname{cost}(x, u)+\mathbb{E}[v(\operatorname{next}(x, u))]\}
$$

Discrete Control and the Bellman equations

- It is also of interest to consider the stochastic setting where we have

$$
p(y \mid x, u)=" \text { probability that } \operatorname{next}(x, u)=y "
$$

- The Bellman equation for the optimal control law becomes

$$
\pi(x)=\underset{u \in \mathcal{U}(x)}{\arg \min }\{\operatorname{cost}(x, u)+\mathbb{E}[v(\operatorname{next}(x, u))]\}
$$

- everything we have seen so far generalizes to this setting.

Discrete Control and the Bellman equations

- It is also of interest to consider the stochastic setting where we have

$$
p(y \mid x, u)=" \text { probability that } \operatorname{next}(x, u)=y "
$$

- The Bellman equation for the optimal control law becomes

$$
\pi(x)=\underset{u \in \mathcal{U}(x)}{\arg \min }\{\operatorname{cost}(x, u)+\mathbb{E}[v(\operatorname{next}(x, u))]\}
$$

- everything we have seen so far generalizes to this setting.
- This is called a Markov Decision Process (MDP)

Continuous Control

- State $x \in \mathbb{R}^{n_{x}}$ and actions $u \in \mathcal{U}(x) \subset \mathbb{R}^{n_{u}}$ are real-valued vectors.

Continuous Control

- State $x \in \mathbb{R}^{n_{x}}$ and actions $u \in \mathcal{U}(x) \subset \mathbb{R}^{n_{u}}$ are real-valued vectors.
- Assume that our trajectory is given by

$$
d x=f(x, u) d t+F(x, u) d w
$$

where $d w$ is n_{w}-dimensional Brownian motion. We can also write the previous as

$$
x(t)=x(0)+\int_{0}^{t} f(x(s), u(s)) d s+\int_{0}^{t} F(x(s), u(s)) d w(s)
$$

Continuous Control

- State $x \in \mathbb{R}^{n_{x}}$ and actions $u \in \mathcal{U}(x) \subset \mathbb{R}^{n_{u}}$ are real-valued vectors.
- Assume that our trajectory is given by

$$
d x=f(x, u) d t+F(x, u) d w
$$

where $d w$ is n_{w}-dimensional Brownian motion. We can also write the previous as

$$
x(t)=x(0)+\int_{0}^{t} f(x(s), u(s)) d s+\int_{0}^{t} F(x(s), u(s)) d w(s)
$$

- Discretizing this into time steps of size Δ, i.e. $t=k \Delta$, gives

$$
\begin{equation*}
x_{k+1}=x_{k}+\Delta f\left(x_{k}, u_{k}\right)+\sqrt{\Delta} F\left(x_{k}, u_{k}\right) \epsilon_{k} \tag{3}
\end{equation*}
$$

where $\epsilon_{k} \sim \mathcal{N}\left(0, I^{n_{w}}\right)$ and $x_{k}=x(k \Delta)$.

Continuous Control

- We also need a cost function.
- For now assume finite horizon-problems, i.e. a final time t_{f} is specified.

Continuous Control

- We also need a cost function.
- For now assume finite horizon-problems, i.e. a final time t_{f} is specified.
- Separate the total cost into cost rate ℓ and final cost h.

Continuous Control

- We also need a cost function.
- For now assume finite horizon-problems, i.e. a final time t_{f} is specified.
- Separate the total cost into cost rate ℓ and final cost h.
- Total cost is then

$$
J(x ., u .)=h\left(x\left(t_{f}\right)\right)+\int_{0}^{t_{f}} \ell(x(t), u(t), t) d t
$$

Continuous Control

- We also need a cost function.
- For now assume finite horizon-problems, i.e. a final time t_{f} is specified.
- Separate the total cost into cost rate ℓ and final cost h.
- Total cost is then

$$
J(x ., u .)=h\left(x\left(t_{f}\right)\right)+\int_{0}^{t_{f}} \ell(x(t), u(t), t) d t
$$

- Discretizing this gives

$$
\begin{equation*}
J(x ., u .)=h\left(x_{n}\right)+\Delta \sum_{k=0}^{n-1} \ell\left(x_{k}, u_{k}, k \Delta\right) \tag{4}
\end{equation*}
$$

where $n=t_{f} / \Delta$.

Continuous Control

- To summarize, we have

$$
\begin{equation*}
x_{k+1}=x_{k}+\Delta f\left(x_{k}, u_{k}\right)+\sqrt{\Delta} F\left(x_{k}, u_{k}\right) \epsilon_{k} \tag{5}
\end{equation*}
$$

with $\epsilon_{k} \sim \mathcal{N}\left(0, I^{n_{w}}\right)$, and

$$
\begin{equation*}
J(x ., u .)=h\left(x_{n}\right)+\Delta \sum_{k=0}^{n-1} \ell\left(x_{k}, u_{k}, k \Delta\right) \tag{6}
\end{equation*}
$$

Continuous Control

- To summarize, we have

$$
\begin{equation*}
x_{k+1}=x_{k}+\Delta f\left(x_{k}, u_{k}\right)+\sqrt{\Delta} F\left(x_{k}, u_{k}\right) \epsilon_{k} \tag{5}
\end{equation*}
$$

with $\epsilon_{k} \sim \mathcal{N}\left(0, I^{n_{w}}\right)$, and

$$
\begin{equation*}
J(x ., u .)=h\left(x_{n}\right)+\Delta \sum_{k=0}^{n-1} \ell\left(x_{k}, u_{k}, k \Delta\right) \tag{6}
\end{equation*}
$$

- From (5) we can see that

$$
x_{k+1}=x_{k}+\Delta f\left(x_{k}, u_{k}\right)+\xi
$$

where $\xi \sim \mathcal{N}\left(0, \Delta S\left(x_{k}, u_{k}\right)\right)$ and $S(x, u)=F(x, u) F(x, u)^{T}$.

Continuous Control

- To summarize, we have

$$
\begin{equation*}
x_{k+1}=x_{k}+\Delta f\left(x_{k}, u_{k}\right)+\sqrt{\Delta} F\left(x_{k}, u_{k}\right) \epsilon_{k} \tag{5}
\end{equation*}
$$

with $\epsilon_{k} \sim \mathcal{N}\left(0, I^{n_{w}}\right)$, and

$$
\begin{equation*}
J(x ., u .)=h\left(x_{n}\right)+\Delta \sum_{k=0}^{n-1} \ell\left(x_{k}, u_{k}, k \Delta\right) \tag{6}
\end{equation*}
$$

- From (5) we can see that

$$
x_{k+1}=x_{k}+\Delta f\left(x_{k}, u_{k}\right)+\xi
$$

where $\xi \sim \mathcal{N}\left(0, \Delta S\left(x_{k}, u_{k}\right)\right)$ and $S(x, u)=F(x, u) F(x, u)^{T}$.

- With this we can define the optimal value function similarly

$$
\begin{equation*}
v(x, k)=\min _{u}\{\Delta \ell(x, u, k \Delta)+\mathbb{E}[v(x+\Delta f(x, u)+\xi, k+1)]\} \tag{7}
\end{equation*}
$$

Continuous Control

- We will simplify $\mathbb{E}[v(x+\Delta f(x, u)+\xi)]$.
- Setting $\delta=\Delta f(x, u)+\xi$, Taylor expansion gives

$$
v(x+\delta)=v(x)+\delta^{T} v_{x}(x)+\frac{1}{2} \delta^{T} v_{x x}(x) \delta+o\left(\delta^{3}\right)
$$

- Then

$$
\mathbb{E}[v(x+\delta)]=v(x)+\Delta f(x, u)^{T} v_{x}(x)+\frac{1}{2} \mathbb{E}\left[\xi^{T} v_{x x}(x) \xi\right]+o\left(\Delta^{2}\right)
$$

- Now,

$$
\begin{aligned}
\mathbb{E}\left[\xi^{\top} v_{x x} \xi\right] & =\mathbb{E}\left[\operatorname{tr}\left(\xi^{\top} v_{x x} \xi\right)\right] \\
& =\mathbb{E}\left[\operatorname{tr}\left(\xi \xi^{\top} v_{x x}\right)\right] \\
& =\operatorname{tr}\left(\operatorname{Cov}[\xi] v_{x x}\right) \\
& =\operatorname{tr}\left(\Delta S v_{x x}\right)
\end{aligned}
$$

Continuous control

Going back to

$$
v(x, k)=\min _{u}\{\Delta \ell(x, u, k \Delta)+\mathbb{E}[v(x+\Delta f(x, u)+\xi, k+1)]\}
$$

and with

$$
\mathbb{E}[v(x+\delta)]=v(x)+\Delta f(x, u)^{T} v_{x}(x)+\frac{1}{2} \operatorname{tr}\left(\Delta S(x, u) v_{x x}(x)\right)+o\left(\Delta^{2}\right)
$$

we get

$$
\frac{v(x, k)-v(x, k+1)}{\Delta}=\min _{u}\left\{\ell+f^{T} v_{x}+\frac{1}{2} \operatorname{tr}\left(S v_{x x}\right)\right\}
$$

Continuous Control

$$
\frac{v(x, k)-v(x, k+1)}{\Delta}=\min _{u}\left\{\ell+f^{T} v_{x}+\frac{1}{2} \operatorname{tr}\left(S v_{x x}\right)\right\}
$$

and recall that k in $v(x, k)$ represents time $k \Delta$, so that the LHS is

$$
\frac{v(x, t)-v(x, t+\Delta)}{\Delta}
$$

As $\Delta \rightarrow 0$, this is $-\frac{\partial}{\partial t} v$, which we denote $-v_{t}$. So for $v\left(x, t_{f}\right)=h(x)$ and $0 \leq t \leq t_{f}$, we have

$$
\begin{equation*}
-v_{t}(x, t)=\min _{u}\left\{\ell(x, u, t)+f(x, u)^{T} v_{x}(x)+\frac{1}{2} \operatorname{tr}\left(S(x, u) v_{x x}(x)\right)\right\} \tag{8}
\end{equation*}
$$

and the associated optimal control law

$$
\begin{equation*}
\pi(x, t)=\underset{u}{\arg \min }\left\{\ell(x, u, t)+f(x, u)^{T} v_{x}(x)+\frac{1}{2} \operatorname{tr}\left(S(x, u) v_{x x}(x)\right)\right\} \tag{9}
\end{equation*}
$$

Continuous Control

$$
\frac{v(x, k)-v(x, k+1)}{\Delta}=\min _{u}\left\{\ell+f^{T} v_{x}+\frac{1}{2} \operatorname{tr}\left(S v_{x x}\right)\right\}
$$

and recall that k in $v(x, k)$ represents time $k \Delta$, so that the LHS is

$$
\frac{v(x, t)-v(x, t+\Delta)}{\Delta}
$$

As $\Delta \rightarrow 0$, this is $-\frac{\partial}{\partial t} v$, which we denote $-v_{t}$. So for $v\left(x, t_{f}\right)=h(x)$ and $0 \leq t \leq t_{f}$, we have

$$
\begin{equation*}
-v_{t}(x, t)=\min _{u}\left\{\ell(x, u, t)+f(x, u)^{T} v_{x}(x)+\frac{1}{2} \operatorname{tr}\left(S(x, u) v_{x x}(x)\right)\right\} \tag{8}
\end{equation*}
$$

and the associated optimal control law

$$
\begin{equation*}
\pi(x, t)=\underset{u}{\arg \min }\left\{\ell(x, u, t)+f(x, u)^{T} v_{x}(x)+\frac{1}{2} \operatorname{tr}\left(S(x, u) v_{x x}(x)\right)\right\} \tag{9}
\end{equation*}
$$

Those are the Hamilton-Jacobi-Bellman (HJB) equations.

Continuous Control: solve the HJB Equations

$$
-v_{t}(x, t)=\min _{u}\left\{\ell(x, u, t)+f(x, u)^{T} v_{x}(x)+\frac{1}{2} \operatorname{tr}\left(S(x, u) v_{x x}(x)\right)\right\}
$$

$$
\text { with } v\left(x, t_{f}\right)=h(x)
$$

- Non-linear second-order PDE.

Continuous Control: solve the HJB Equations

$$
-v_{t}(x, t)=\min _{u}\left\{\ell(x, u, t)+f(x, u)^{T} v_{x}(x)+\frac{1}{2} \operatorname{tr}\left(S(x, u) v_{x x}(x)\right)\right\}
$$

with $v\left(x, t_{f}\right)=h(x)$.

- Non-linear second-order PDE.
- May not have a classic solution

Continuous Control: solve the HJB Equations

$$
-v_{t}(x, t)=\min _{u}\left\{\ell(x, u, t)+f(x, u)^{T} v_{x}(x)+\frac{1}{2} \operatorname{tr}\left(S(x, u) v_{x x}(x)\right)\right\}
$$

with $v\left(x, t_{f}\right)=h(x)$.

- Non-linear second-order PDE.
- May not have a classic solution
- numerical methods relying on "viscosity" exist

Continuous Control: solve the HJB Equations

$$
-v_{t}(x, t)=\min _{u}\left\{\ell(x, u, t)+f(x, u)^{T} v_{x}(x)+\frac{1}{2} \operatorname{tr}\left(S(x, u) v_{x x}(x)\right)\right\}
$$

with $v\left(x, t_{f}\right)=h(x)$.

- Non-linear second-order PDE.
- May not have a classic solution
- numerical methods relying on "viscosity" exist
- suffers from "curse of dimensionality"

Continuous Control: solve the HJB Equations

$$
-v_{t}(x, t)=\min _{u}\left\{\ell(x, u, t)+f(x, u)^{T} v_{x}(x)+\frac{1}{2} \operatorname{tr}\left(S(x, u) v_{x x}(x)\right)\right\}
$$

with $v\left(x, t_{f}\right)=h(x)$.

- Non-linear second-order PDE.
- May not have a classic solution
- numerical methods relying on "viscosity" exist
- suffers from "curse of dimensionality"
- several methods for approximate solutions exist and work well in practice.

Continuous Control: Infinite Horizon

Two infinite-horizon costs used in practice:

- Discounted cost formulation

$$
J(x ., u .)=\int_{0}^{\infty} \exp (-\alpha t) \ell(x(t), u(t)) d t
$$

Continuous Control: Infinite Horizon

Two infinite-horizon costs used in practice:

- Discounted cost formulation

$$
J(x ., u .)=\int_{0}^{\infty} \exp (-\alpha t) \ell(x(t), u(t)) d t
$$

- Average cost per stage formulation

$$
J(x ., u .)=\lim _{t_{f} \rightarrow \infty} \frac{1}{t_{f}} \int_{0}^{t_{f}} \ell(x(t), u(t)) d t
$$

Continuous Control: Infinite Horizon

Two infinite-horizon costs used in practice:

- Discounted cost formulation

$$
J(x ., u .)=\int_{0}^{\infty} \exp (-\alpha t) \ell(x(t), u(t)) d t
$$

- Average cost per stage formulation

$$
J(x ., u .)=\lim _{t_{f} \rightarrow \infty} \frac{1}{t_{f}} \int_{0}^{t_{f}} \ell(x(t), u(t)) d t
$$

Both those formulations bring similar HJB equations, except that they do not depend on time.

Continuous Control: Infinite Horizon

Two infinite-horizon costs used in practice:

- Discounted cost formulation

$$
J(x ., u .)=\int_{0}^{\infty} \exp (-\alpha t) \ell(x(t), u(t)) d t
$$

- Average cost per stage formulation

$$
J(x ., u .)=\lim _{t_{f} \rightarrow \infty} \frac{1}{t_{f}} \int_{0}^{t_{f}} \ell(x(t), u(t)) d t
$$

Both those formulations bring similar HJB equations, except that they do not depend on time.
In that sense they are easier to solve using numerical approximations.

Continuous Control: Infinite Horizon

Two infinite-horizon costs used in practice:

- Discounted cost formulation

$$
J(x ., u .)=\int_{0}^{\infty} \exp (-\alpha t) \ell(x(t), u(t)) d t
$$

- Average cost per stage formulation

$$
J(x ., u .)=\lim _{t_{f} \rightarrow \infty} \frac{1}{t_{f}} \int_{0}^{t_{f}} \ell(x(t), u(t)) d t
$$

Both those formulations bring similar HJB equations, except that they do not depend on time.
In that sense they are easier to solve using numerical approximations. However the finite-horizon problem also advantages.

Linear-Quadratic-Gaussian control

- An important class of optimal control problems
- unlike many other problems, it is possible to find a closed-form formula
- we will derive solutions in both the continuous and discrete cases

LQG: the Continuous Case

We make the following assumptions

- dynamics: $d x=(A x+B u) d t+F d w$
- cost rate: $\ell(x, u)=\frac{1}{2} u^{\top} R u+\frac{1}{2} x^{\top} Q x$
- final cost: $h(x)=\frac{1}{2} x^{\top} Q^{f} x$
where R, Q and Q^{f} are symmetric, R is positive definite, and set $S=F F^{T}$.

LQG: the Continuous Case

We make the following assumptions

- dynamics: $d x=(A x+B u) d t+F d w$
- cost rate: $\ell(x, u)=\frac{1}{2} u^{\top} R u+\frac{1}{2} x^{\top} Q x$
- final cost: $h(x)=\frac{1}{2} x^{\top} Q^{f} x$
where R, Q and Q^{f} are symmetric, R is positive definite, and set $S=F F^{T}$.
Recall the HJB equation

$$
-v_{t}(x, t)=\min _{u}\left\{\ell(x, u, t)+f(x, u)^{T} v_{x}(x)+\frac{1}{2} \operatorname{tr}\left(S(x, u) v_{x x}(x)\right)\right\}
$$

with $v\left(x, t_{f}\right)=h(x)$.

LQG: the Continuous Case

We make the following assumptions

- dynamics: $d x=(A x+B u) d t+F d w$
- cost rate: $\ell(x, u)=\frac{1}{2} u^{\top} R u+\frac{1}{2} x^{\top} Q x$
- final cost: $h(x)=\frac{1}{2} x^{\top} Q^{f} x$
where R, Q and Q^{f} are symmetric, R is positive definite, and set $S=F F^{T}$.
Recall the HJB equation

$$
-v_{t}(x, t)=\min _{u}\left\{\ell(x, u, t)+f(x, u)^{T} v_{x}(x)+\frac{1}{2} \operatorname{tr}\left(S(x, u) v_{x x}(x)\right)\right\}
$$

with $v\left(x, t_{f}\right)=h(x)$.
In our case it reads
$-v_{t}(x, t)=\min _{u}\left\{\frac{1}{2} u^{\top} R u+\frac{1}{2} x^{\top} Q x+(A x+B u)^{T} v_{x}(x)+\frac{1}{2} \operatorname{tr}\left(S v_{x x}(x)\right)\right\}$
with $v\left(x, t_{f}\right)=\frac{1}{2} x^{\top} Q^{f} x$

LQG: the Continous Case

$$
-v_{t}(x, t)=\min _{u}\left\{\frac{1}{2} u^{T} R u+\frac{1}{2} x^{T} Q x+(A x+B u)^{T} v_{x}(x)+\frac{1}{2} \operatorname{tr}\left(S v_{x x}(x)\right)\right\}
$$

- We make the following guess: $v(x, t)=\frac{1}{2} x^{\top} V(t) x+a(t)$
- the derivatives in the HJB equations are
- $v_{t}(x, t)=\frac{1}{2} x^{\top} \dot{V}(t) x+\dot{a}(t)$
- $v_{x}(x)=V(t) x$
- $v_{x x}(x)=V(t)$

LQG: the Continuous Case

Plugging back into the HJB equation gives
$-v_{t}(x, t)=\min _{u}\left\{\frac{1}{2} u^{T} R u+\frac{1}{2} x^{T} Q x+(A x+B u)^{T} V(t) x+\frac{1}{2} \operatorname{tr}(S V(t))\right\}$

LQG: the Continuous Case

Plugging back into the HJB equation gives
$-v_{t}(x, t)=\min _{u}\left\{\frac{1}{2} u^{\top} R u+\frac{1}{2} x^{\top} Q x+(A x+B u)^{T} V(t) x+\frac{1}{2} \operatorname{tr}(S V(t))\right\}$
This is simply a quadratic in u, whose minimizer is

$$
u^{*}=-R^{-1} B^{T} V(t) x
$$

and thus
$-v_{t}(x, t)=\frac{1}{2} x^{T}\left(Q+A^{T} V(t)+V(t) A-V(t) B R^{-1} B^{T} V(t)\right) x+\frac{1}{2} \operatorname{tr}(\mathrm{SV}(\mathrm{t}))$

LQG: the Continuous Case

Plugging back into the HJB equation gives
$-v_{t}(x, t)=\min _{u}\left\{\frac{1}{2} u^{\top} R u+\frac{1}{2} x^{\top} Q x+(A x+B u)^{T} V(t) x+\frac{1}{2} \operatorname{tr}(S V(t))\right\}$
This is simply a quadratic in u, whose minimizer is

$$
u^{*}=-R^{-1} B^{T} V(t) x
$$

and thus
$-v_{t}(x, t)=\frac{1}{2} x^{T}\left(Q+A^{T} V(t)+V(t) A-V(t) B R^{-1} B^{T} V(t)\right) x+\frac{1}{2} \operatorname{tr}(\mathrm{SV}(\mathrm{t}))$
Because $v_{t}(x, t)=\frac{1}{2} x^{\top} \dot{V}(t) x+\dot{a}(t)$, this gives

$$
\begin{align*}
-\dot{V}(t) & =Q+A^{T} V(t)+V(t) A-V(t) B R^{-1} B^{T} V(t) \tag{10}\\
-\dot{a}(t) & =\frac{1}{2} \operatorname{tr}(\mathrm{SV}(\mathrm{t}))
\end{align*}
$$

LQG: the Continuous Case

Plugging back into the HJB equation gives

$$
-v_{t}(x, t)=\min _{u}\left\{\frac{1}{2} u^{T} R u+\frac{1}{2} x^{T} Q x+(A x+B u)^{T} V(t) x+\frac{1}{2} \operatorname{tr}(S V(t))\right\}
$$

This is simply a quadratic in u, whose minimizer is

$$
u^{*}=-R^{-1} B^{T} V(t) x
$$

and thus
$-v_{t}(x, t)=\frac{1}{2} x^{T}\left(Q+A^{T} V(t)+V(t) A-V(t) B R^{-1} B^{T} V(t)\right) x+\frac{1}{2} \operatorname{tr}(\mathrm{SV}(\mathrm{t}))$
Because $v_{t}(x, t)=\frac{1}{2} x^{\top} \dot{V}(t) x+\dot{a}(t)$, this gives

$$
\begin{align*}
-\dot{V}(t) & =Q+A^{T} V(t)+V(t) A-V(t) B R^{-1} B^{T} V(t) \tag{10}\\
-\dot{a}(t) & =\frac{1}{2} \operatorname{tr}(\mathrm{SV}(\mathrm{t}))
\end{align*}
$$

This is a continuous-time Riccati equation.

LQG: the Continuous Case

$$
\begin{aligned}
-\dot{V}(t) & =Q+A^{\top} V(t)+V(t) A-V(t) B R^{-1} B^{\top} V(t) \\
-\dot{a}(t) & =\frac{1}{2} \operatorname{tr}(\mathrm{SV}(\mathrm{t}))
\end{aligned}
$$

The boundary conditions $v\left(x, t_{f}\right)=\frac{1}{2} x^{\top} Q^{f} x$ imply that $V\left(t_{f}\right)=Q^{f}$ and $a\left(t_{f}\right)=0$.

LQG: the Continuous Case

$$
\begin{aligned}
-\dot{V}(t) & =Q+A^{\top} V(t)+V(t) A-V(t) B R^{-1} B^{T} V(t) \\
-\dot{a}(t) & =\frac{1}{2} \operatorname{tr}(\mathrm{SV}(\mathrm{t}))
\end{aligned}
$$

The boundary conditions $v\left(x, t_{f}\right)=\frac{1}{2} x^{\top} Q^{f} x$ imply that $V\left(t_{f}\right)=Q^{f}$ and $a\left(t_{f}\right)=0$.
\Rightarrow This is a simple ODE, which is easy to solve.

LQG: the Continuous Case

$$
\begin{aligned}
-\dot{V}(t) & =Q+A^{\top} V(t)+V(t) A-V(t) B R^{-1} B^{T} V(t) \\
-\dot{a}(t) & =\frac{1}{2} \operatorname{tr}(\mathrm{SV}(\mathrm{t}))
\end{aligned}
$$

The boundary conditions $v\left(x, t_{f}\right)=\frac{1}{2} x^{\top} Q^{f} x$ imply that $V\left(t_{f}\right)=Q^{f}$ and $a\left(t_{f}\right)=0$.
\Rightarrow This is a simple ODE, which is easy to solve.
The optimal control law is given by

$$
u^{*}=-R^{-1} B^{T} V(t) x
$$

LQG: the Continuous Case

$$
\begin{aligned}
-\dot{V}(t) & =Q+A^{\top} V(t)+V(t) A-V(t) B R^{-1} B^{T} V(t) \\
-\dot{a}(t) & =\frac{1}{2} \operatorname{tr}(\mathrm{SV}(\mathrm{t}))
\end{aligned}
$$

The boundary conditions $v\left(x, t_{f}\right)=\frac{1}{2} x^{\top} Q^{f} x$ imply that $V\left(t_{f}\right)=Q^{f}$ and $a\left(t_{f}\right)=0$.
\Rightarrow This is a simple ODE, which is easy to solve.
The optimal control law is given by

$$
u^{*}=-R^{-1} B^{T} V(t) x
$$

- It does not depend on the noise.
- It remains the same in the deterministic case, called the linear-quadratic regulator.

LQR: the Discrete Case

We make the following assumptions

- dynamics: $x_{k+1}=A x_{k}+B u_{k}$
- cost: $\ell\left(x_{k}, u_{k}\right)=\frac{1}{2} u_{k}^{T} R u_{k}+\frac{1}{2} x_{k}^{T} Q x_{k}$
- final cost: $h\left(x_{n}\right)=\frac{1}{2} x_{n}^{T} Q^{f} x_{n}$ where R, Q and Q^{f} are symmetric, R is positive definite, and set $S=F F^{T}$.

LQR: the Discrete Case

We make the following assumptions

- dynamics: $x_{k+1}=A x_{k}+B u_{k}$
- cost: $\ell\left(x_{k}, u_{k}\right)=\frac{1}{2} u_{k}^{T} R u_{k}+\frac{1}{2} x_{k}^{T} Q x_{k}$
- final cost: $h\left(x_{n}\right)=\frac{1}{2} x_{n}^{T} Q^{f} x_{n}$
where R, Q and Q^{f} are symmetric, R is positive definite, and set $S=F F^{T}$.
Recall the Bellman equation

$$
v(x, k)=\min _{u}\{\ell(x \cdot u, k)+v(\operatorname{next}(x, u, k))\}
$$

with $v\left(x_{n}\right)=h\left(x_{n}\right)$.

LQR: the Discrete Case

We make the following assumptions

- dynamics: $x_{k+1}=A x_{k}+B u_{k}$
- cost: $\ell\left(x_{k}, u_{k}\right)=\frac{1}{2} u_{k}^{T} R u_{k}+\frac{1}{2} x_{k}^{T} Q x_{k}$
- final cost: $h\left(x_{n}\right)=\frac{1}{2} x_{n}^{T} Q^{f} x_{n}$
where R, Q and Q^{f} are symmetric, R is positive definite, and set $S=F F^{T}$.
Recall the Bellman equation

$$
v(x, k)=\min _{u}\{\ell(x . u, k)+v(\operatorname{next}(x, u, k))\}
$$

with $v\left(x_{n}\right)=h\left(x_{n}\right)$.
Again we make the assumption that

$$
v(x, k)=\frac{1}{2} x^{\top} V_{k} x
$$

LQR: the Discrete Case

The boundary constraint gives $V_{n}=Q^{f}$.
Plugging everything gives

$$
\frac{1}{2} x^{\top} V_{k} x=\min _{u}\left\{\frac{1}{2} u^{\top} R u+\frac{1}{2} x^{\top} Q x+\frac{1}{2}(A x+B u)^{\top} V_{k+1}(A x+B u)\right\}
$$

LQR: the Discrete Case

The boundary constraint gives $V_{n}=Q^{f}$.
Plugging everything gives

$$
\frac{1}{2} x^{T} V_{k} x=\min _{u}\left\{\frac{1}{2} u^{T} R u+\frac{1}{2} x^{T} Q x+\frac{1}{2}(A x+B u)^{T} V_{k+1}(A x+B u)\right\}
$$

This is simply a quadratic in u, and we get

$$
V_{k}=Q+A^{T} V_{k+1} A-A^{T} V_{k+1} B\left(R+B^{T} V_{k+1} B\right)^{-1} B^{T} V_{k+1} A
$$

which is a discrete-time Ricatti equation and the associated optimal control law

$$
\begin{aligned}
u_{k} & =-L_{k} x_{k} \\
\text { where } L_{k} & =\left(R+B^{T} V_{k+1} B\right)^{-1} V_{k+1} A
\end{aligned}
$$

LQR: the Discrete Case

$$
V_{k}=Q+A^{T} V_{k+1} A-A^{T} V_{k+1} B\left(R+B^{T} V_{k+1} B\right)^{-1} B^{T} V_{k+1} A
$$

- Start with $V_{n}=Q^{f}$ and iterate backwards
- Can be computed offline

Deterministic Control: Pontryagin's Maximum Principle

- Another approach to optimal control theory
- developped in the Soviet Union by Pontryagin
- only applies for deterministic problems.
- avoids the curse of dimensionality.
- applies for both continuous and discrete time.

Pontryagin's Maximum Principle: The Continuous Case

Setting:

- dynamics: $d x=f(x(t), u(t)) d t$
- cost rate: $\ell(x(t), u(t), t)$
- final cost: $h\left(x\left(t_{f}\right)\right)$
with fixed x_{0} and final time t_{f}.

Pontryagin's Maximum Principle: The Continuous Case

Setting:

- dynamics: $d x=f(x(t), u(t)) d t$
- cost rate: $\ell(x(t), u(t), t)$
- final cost: $h\left(x\left(t_{f}\right)\right)$
with fixed x_{0} and final time t_{f}.
Recall the HJB equation

$$
-v_{t}(x, t)=\min _{u}\left\{\ell(x, u, t)+f(x, u)^{T} v_{x}(x)+\frac{1}{2} \operatorname{tr}\left(S(x, u) v_{x x}(x)\right)\right\}
$$

Pontryagin's Maximum Principle: The Continuous Case

Setting:

- dynamics: $d x=f(x(t), u(t)) d t$
- cost rate: $\ell(x(t), u(t), t)$
- final cost: $h\left(x\left(t_{f}\right)\right)$
with fixed x_{0} and final time t_{f}.
Recall the HJB equation

$$
-v_{t}(x, t)=\min _{u}\left\{\ell(x, u, t)+f(x, u)^{T} v_{x}(x)+\frac{1}{2} \operatorname{tr}\left(S(x, u) v_{x x}(x)\right)\right\}
$$

Because we are in the deterministic case we have

$$
-v_{t}(x, t)=\min _{u}\left\{\ell(x, u, t)+f(x, u)^{T} v_{x}(x)\right\}
$$

Pontryagin's Maximum Principle: The Continuous Case

Setting:

- dynamics: $d x=f(x(t), u(t)) d t$
- cost rate: $\ell(x(t), u(t), t)$
- final cost: $h\left(x\left(t_{f}\right)\right)$
with fixed x_{0} and final time t_{f}.
Recall the HJB equation

$$
-v_{t}(x, t)=\min _{u}\left\{\ell(x, u, t)+f(x, u)^{T} v_{x}(x)+\frac{1}{2} \operatorname{tr}\left(S(x, u) v_{x x}(x)\right)\right\}
$$

Because we are in the deterministic case we have

$$
-v_{t}(x, t)=\min _{u}\left\{\ell(x, u, t)+f(x, u)^{T} v_{x}(x)\right\}
$$

Suppose optimal control law is given by $u=\pi(x, t)$

Pontryagin's Maximum Principle: The Continuous Case

$$
-v_{t}(x, t)=\ell(x, \pi(x, t), t)+f(x, \pi(x, t))^{T} v_{x}(x, t)
$$

Pontryagin's Maximum Principle: The Continuous Case

$$
-v_{t}(x, t)=\ell(x, \pi(x, t), t)+f(x, \pi(x, t))^{T} v_{x}(x, t)
$$

Taking derivatives w.r.t. x

$$
0=v_{t x}+\ell_{x}+\pi_{x}^{T} \ell_{u}+f_{x}^{T} v_{x}+\pi_{x}^{T} f_{u}^{T} v_{x}+v_{x x} f
$$

Pontryagin's Maximum Principle: The Continuous Case

$$
-v_{t}(x, t)=\ell(x, \pi(x, t), t)+f(x, \pi(x, t))^{T} v_{x}(x, t)
$$

Taking derivatives w.r.t. x

$$
0=v_{t x}+\ell_{x}+\pi_{x}^{T} \ell_{u}+f_{x}^{T} v_{x}+\pi_{x}^{T} f_{u}^{T} v_{x}+v_{x x} f
$$

Observe that $\dot{v}_{x}=v_{x x} \dot{x}+v_{t x}=v_{x x} f+v_{t x}$,

$$
0=\dot{v}_{x}+\ell_{x}+f_{x}^{T} v_{x}+\pi_{x}^{T}\left(\ell_{u}+f_{u}^{T} v_{x}\right)
$$

Pontryagin's Maximum Principle: The Continuous Case

$$
-v_{t}(x, t)=\ell(x, \pi(x, t), t)+f(x, \pi(x, t))^{T} v_{x}(x, t)
$$

Taking derivatives w.r.t. x

$$
0=v_{t x}+\ell_{x}+\pi_{x}^{T} \ell_{u}+f_{x}^{T} v_{x}+\pi_{x}^{T} f_{u}^{T} v_{x}+v_{x x} f
$$

Observe that $\dot{v}_{x}=v_{x x} \dot{x}+v_{t x}=v_{x x} f+v_{t x}$,

$$
0=\dot{v}_{x}+\ell_{x}+f_{x}^{T} v_{x}+\pi_{x}^{T}\left(\ell_{u}+f_{u}^{T} v_{x}\right)
$$

Observe that $\ell_{u}+f_{u}^{T} v_{x}=\ell_{u}(x, \pi(x, t), t)+f_{u}(x, \pi(x, t))^{T} v_{x}(x, t)$

Pontryagin's Maximum Principle: The Continuous Case

$$
-v_{t}(x, t)=\ell(x, \pi(x, t), t)+f(x, \pi(x, t))^{T} v_{x}(x, t)
$$

Taking derivatives w.r.t. x

$$
0=v_{t x}+\ell_{x}+\pi_{x}^{T} \ell_{u}+f_{x}^{T} v_{x}+\pi_{x}^{T} f_{u}^{T} v_{x}+v_{x x} f
$$

Observe that $\dot{v}_{x}=v_{x x} \dot{x}+v_{t x}=v_{x x} f+v_{t x}$,

$$
0=\dot{v}_{x}+\ell_{x}+f_{x}^{T} v_{x}+\pi_{x}^{T}\left(\ell_{u}+f_{u}^{T} v_{x}\right)
$$

Observe that $\ell_{u}+f_{u}^{T} v_{x}=\ell_{u}(x, \pi(x, t), t)+f_{u}(x, \pi(x, t))^{T} v_{x}(x, t)=0$

Pontryagin's Maximum Principle: The Continuous Case

We then get

$$
-\dot{v}_{x}(x, t)=f_{x}(x, \pi(x, t))^{T} v_{x}(x, t)+\ell_{x}(x, \pi(x, t), t)
$$

Pontryagin's Maximum Principle: The Continuous Case

We then get

$$
-\dot{v}_{x}(x, t)=f_{x}(x, \pi(x, t))^{T} v_{x}(x, t)+\ell_{x}(x, \pi(x, t), t)
$$

Setting $p=v_{x}$, this gives

$$
-\dot{p}(t)=f_{x}(x, \pi(x, t))^{T} p(t)+\ell_{x}(x, \pi(x, t), t)
$$

Pontryagin's Maximum Principle: The Continuous Case

We then get

$$
-\dot{v}_{x}(x, t)=f_{x}(x, \pi(x, t))^{T} v_{x}(x, t)+\ell_{x}(x, \pi(x, t), t)
$$

Setting $p=v_{x}$, this gives

$$
-\dot{p}(t)=f_{x}(x, \pi(x, t))^{T} p(t)+\ell_{x}(x, \pi(x, t), t)
$$

The maximum principle thus reads

$$
\begin{aligned}
\dot{x}(t) & =f(x(t), u(t)) \\
-\dot{p}(t) & =f_{x}(x(t), u(t))^{T} p(t)+\ell_{x}(x(t), u(t), t) \\
u(t) & =\underset{u}{\arg \min }\left\{\ell(x(t), u, t)+f(x(t), u)^{T} p(t)\right\}
\end{aligned}
$$

with boundary conditions $p\left(t_{f}\right)=v_{x}\left(x\left(t_{f}\right), t_{f}\right)=h_{x}\left(x\left(t_{f}\right)\right)$, and x_{0}, t_{f} given.

Pontryagin's Maximum Principle: The Continuous Case

Setting the Hamiltonian $H(x, u, p, t):=\ell(x, u, t)+f(x, u)^{T} p$, the maximum principle reads

$$
\begin{aligned}
\dot{x}(t) & =f(x(t), u(t)) \\
-\dot{p}(t) & =f_{x}(x(t), u(t))^{T} p(t)+\ell_{x}(x(t), u(t), t) \\
u(t) & =\underset{u}{\arg \min } H(x(t), u, p(t), t)
\end{aligned}
$$

with $p\left(t_{f}\right)=h_{x}\left(x\left(t_{f}\right)\right)$

Pontryagin's Maximum Principle: The Continuous Case

Setting the Hamiltonian $H(x, u, p, t):=\ell(x, u, t)+f(x, u)^{T} p$, the maximum principle reads

$$
\begin{aligned}
\dot{x}(t) & =f(x(t), u(t)) \\
-\dot{p}(t) & =f_{x}(x(t), u(t))^{T} p(t)+\ell_{x}(x(t), u(t), t) \\
u(t) & =\underset{u}{\arg \min } H(x(t), u, p(t), t)
\end{aligned}
$$

with $p\left(t_{f}\right)=h_{x}\left(x\left(t_{f}\right)\right)$

- Simple ODE, cost grows linearly with n_{x}

Pontryagin's Maximum Principle: The Continuous Case

Setting the Hamiltonian $H(x, u, p, t):=\ell(x, u, t)+f(x, u)^{T} p$, the maximum principle reads

$$
\begin{aligned}
\dot{x}(t) & =f(x(t), u(t)) \\
-\dot{p}(t) & =f_{x}(x(t), u(t))^{T} p(t)+\ell_{x}(x(t), u(t), t) \\
u(t) & =\underset{u}{\arg \min } H(x(t), u, p(t), t)
\end{aligned}
$$

with $p\left(t_{f}\right)=h_{x}\left(x\left(t_{f}\right)\right)$

- Simple ODE, cost grows linearly with n_{x}
- existing software packages to solve

Pontryagin's Maximum Principle: The Continuous Case

Setting the Hamiltonian $H(x, u, p, t):=\ell(x, u, t)+f(x, u)^{T} p$, the maximum principle reads

$$
\begin{aligned}
\dot{x}(t) & =f(x(t), u(t)) \\
-\dot{p}(t) & =f_{x}(x(t), u(t))^{T} p(t)+\ell_{x}(x(t), u(t), t) \\
u(t) & =\underset{u}{\arg \min } H(x(t), u, p(t), t)
\end{aligned}
$$

with $p\left(t_{f}\right)=h_{x}\left(x\left(t_{f}\right)\right)$

- Simple ODE, cost grows linearly with n_{x}
- existing software packages to solve
- Only issue is to solve for the Hamiltonian

Pontryagin's Maximum Principle: The Continuous Case

Setting the Hamiltonian $H(x, u, p, t):=\ell(x, u, t)+f(x, u)^{T} p$, the maximum principle reads

$$
\begin{aligned}
\dot{x}(t) & =f(x(t), u(t)) \\
-\dot{p}(t) & =f_{x}(x(t), u(t))^{T} p(t)+\ell_{x}(x(t), u(t), t) \\
u(t) & =\underset{u}{\arg \min } H(x(t), u, p(t), t)
\end{aligned}
$$

with $p\left(t_{f}\right)=h_{x}\left(x\left(t_{f}\right)\right)$

- Simple ODE, cost grows linearly with n_{x}
- existing software packages to solve
- Only issue is to solve for the Hamiltonian
- For problems where the dynamic is linear and the cost is quadratic w, r.t. the control u, a nice closed form formula exists.

Pontryagin's Maximum Principle: The Discrete Case

- Derivation in the continuous and discrete case is also possible using Lagrange multipliers
- Optimization using gradient descent is possible in the discrete case

Optimal Estimation and the Kalman Filter

- Goal: From a sequence of noisy measurements, estimate the true dynamics.

Optimal Estimation and the Kalman Filter

- Goal: From a sequence of noisy measurements, estimate the true dynamics.
- Intimately tied to the problem of optimal control

Optimal Estimation and the Kalman Filter

- Goal: From a sequence of noisy measurements, estimate the true dynamics.
- Intimately tied to the problem of optimal control

$$
\begin{aligned}
& \text { dynamics: } x_{k+1}=A x_{k}+w_{k} \\
& \text { observation: } y_{k}=H x_{k}+v_{k}
\end{aligned}
$$

where $w_{k} \sim \mathcal{N}(0, S)$ and $v_{k} \sim \mathcal{N}(0, P), x_{0} \sim \mathcal{N}\left(\hat{x}_{0}, \Sigma_{0}\right)$, and $A, H, S, P, \hat{x}_{0}, \Sigma_{0}$ are known.

Optimal Estimation and the Kalman Filter

- Goal: From a sequence of noisy measurements, estimate the true dynamics.
- Intimately tied to the problem of optimal control

$$
\begin{aligned}
& \text { dynamics: } x_{k+1}=A x_{k}+w_{k} \\
& \text { observation: } y_{k}=H x_{k}+v_{k}
\end{aligned}
$$

where $w_{k} \sim \mathcal{N}(0, S)$ and $v_{k} \sim \mathcal{N}(0, P), x_{0} \sim \mathcal{N}\left(\hat{x}_{0}, \Sigma_{0}\right)$, and $A, H, S, P, \hat{x}_{0}, \Sigma_{0}$ are known.
\Rightarrow Goal: estimate the probability distribution of x_{k} given y_{0}, \ldots, y_{k-1} :

$$
\begin{aligned}
& \hat{p}_{k}=p\left(x_{k} \mid y_{0}, \ldots, y_{k-1}\right) \\
& \hat{p}_{0}=\mathcal{N}\left(\hat{x}_{0}, \Sigma_{0}\right)
\end{aligned}
$$

Optimal Estimation and the Kalman Filter

Using properties of multivariate Gaussian, it can be shown that

$$
\hat{p}_{k+1}=p\left(x_{k+1} \mid y_{0}, \ldots, y_{k}\right) \sim \mathcal{N}\left(\hat{x}_{k+1}, \Sigma_{k+1}\right)
$$

where

$$
\begin{equation*}
\hat{x}_{k+1}=A \hat{x}_{k}+A \Sigma_{k} H^{T}\left(P+H \Sigma_{k} H^{T}\right)^{-1}\left(y_{k}-H \hat{x}_{k}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\Sigma_{k+1}=S+A \Sigma_{k} A^{T}-A \Sigma_{k} H^{T}\left(P+H \Sigma_{k} H^{T}\right)^{-1} H \Sigma_{k} A^{T} \tag{12}
\end{equation*}
$$

Optimal Estimation and the Kalman Filter

Using properties of multivariate Gaussian, it can be shown that

$$
\hat{p}_{k+1}=p\left(x_{k+1} \mid y_{0}, \ldots, y_{k}\right) \sim \mathcal{N}\left(\hat{x}_{k+1}, \Sigma_{k+1}\right)
$$

where

$$
\begin{equation*}
\hat{x}_{k+1}=A \hat{x}_{k}+A \Sigma_{k} H^{T}\left(P+H \Sigma_{k} H^{T}\right)^{-1}\left(y_{k}-H \hat{x}_{k}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\Sigma_{k+1}=S+A \Sigma_{k} A^{T}-A \Sigma_{k} H^{T}\left(P+H \Sigma_{k} H^{T}\right)^{-1} H \Sigma_{k} A^{T} \tag{12}
\end{equation*}
$$

This is the Kalman filter.

Optimal Estimation and the Kalman Filter

Using properties of multivariate Gaussian, it can be shown that

$$
\hat{p}_{k+1}=p\left(x_{k+1} \mid y_{0}, \ldots, y_{k}\right) \sim \mathcal{N}\left(\hat{x}_{k+1}, \Sigma_{k+1}\right)
$$

where

$$
\begin{equation*}
\hat{x}_{k+1}=A \hat{x}_{k}+A \Sigma_{k} H^{T}\left(P+H \Sigma_{k} H^{T}\right)^{-1}\left(y_{k}-H \hat{x}_{k}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\Sigma_{k+1}=S+A \Sigma_{k} A^{T}-A \Sigma_{k} H^{T}\left(P+H \Sigma_{k} H^{T}\right)^{-1} H \Sigma_{k} A^{T} \tag{12}
\end{equation*}
$$

This is the Kalman filter.
Recall the Riccati equation for LQR

$$
V_{k}=Q+A^{T} V_{k+1} A-A^{T} V_{k+1} B\left(R+B^{T} V_{k+1} B\right)^{-1} B^{T} V_{k+1} A
$$

Conclusion

What we covered today

- Bellman equations and dynamic programming

Conclusion

What we covered today

- Bellman equations and dynamic programming
- Hamilton-Jacobi-Bellman equations

Conclusion

What we covered today

- Bellman equations and dynamic programming
- Hamilton-Jacobi-Bellman equations
- Linear-Quadratic-Gaussian, Linear-Quadratic regulator and the Riccati equations

Conclusion

What we covered today

- Bellman equations and dynamic programming
- Hamilton-Jacobi-Bellman equations
- Linear-Quadratic-Gaussian, Linear-Quadratic regulator and the Riccati equations
- Pontryagin's maximum principle

Conclusion

What we covered today

- Bellman equations and dynamic programming
- Hamilton-Jacobi-Bellman equations
- Linear-Quadratic-Gaussian, Linear-Quadratic regulator and the Riccati equations
- Pontryagin's maximum principle
- Kalman Filter

Conclusion

What we covered today

- Bellman equations and dynamic programming
- Hamilton-Jacobi-Bellman equations
- Linear-Quadratic-Gaussian, Linear-Quadratic regulator and the Riccati equations
- Pontryagin's maximum principle
- Kalman Filter

What we didn't cover

- solving non-linear optimal problem using linear relaxation
- duality between optimal control and optimal estimation

Any questions?

Thank you!

References

[1] Kenji Doya, Shin Ishii, Alexandre Pouget, and Rajesh PN Rao. Bayesian brain: Probabilistic approaches to neural coding. MIT press, 2007.
[2] A. Heydari. Revisiting approximate dynamic programming and its convergence. IEEE Transactions on Cybernetics, 44(12):2733-2743, 2014.
[3] Ali Heydari. Convergence analysis of policy iteration. CoRR, abs/1505.05216, 2015. URL http://arxiv.org/abs/1505.05216.

