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Brief Recap of this Semester

Why does deep learning work ?

So far : geometry of minima,

implicit regularization of SGD, etc..

1



Brief Recap of this Semester

Why does deep learning work ? So far : geometry of minima,

implicit regularization of SGD, etc..

1



Today

Why does deep learning work ? Today: Bounds on Generalization

error.

More specifically, bounds on the complexity of a certain class of neural

networks.
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Motivation behind use of two-layer ReLU network

• Study restricted to two-layer ReLU neural networks

• Following experiment on CIFAR-10
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Notation

Consider two-layer fully connected ReLU networks with input

dimension d , output dimension c , and number of hidden units

h.

Prediction function is

fV ,U : Rd → Rc

fV ,U(x) = V [Ux ]+

with x ∈ Rd , U ∈ Rh×d , V ∈ Rc×h.
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Loss Function

Margin operator

µ : Rc × [c]→ R

µ(f (x), y) = f (x)[y ]−max
i 6=y

f (x)[i ]

Ramp loss

`γ(f (x), y) =


0 µ(f (x), y) > γ

µ(f (x), y)/γ µ(f (x), y) ∈ [0, γ]

1 µ(f (x), y) < 0
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Expected margin and empirical estimate

Ramp loss

`γ(f (x), y) =


0 µ(f (x), y) > γ

µ(f (x), y)/γ µ(f (x), y) ∈ [0, γ]

1 µ(f (x), y) < 0

Expected margin loss of f

Lγ(f ) = E(x,y)∼D
[
`γ(f (x), y)

]

Empirical estimate of expected margin loss

L̂γ(f ) =
1

m

m∑
i=1

`γ(f (xi ), yi )

Write L0(f ) and L̂0(f ) for expected risk and training error respectively.
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Main Contributions

• Proved tighter bounds on the expected risk L0(f )

• Empirically showed that it is the only known upper bound that

decreases with the number of hidden units
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Rademacher Complexity

Definition The Rademacher Complexity of a class H of functions with

respect to the training set S = {zi}mi=1 is defined as

RS(H) =
1

m
Eσ∼{±1}m

[
sup
f∈H

m∑
i=1

σi f (zi )
]

Theorem: For a function class H, with probability 1− δ, we have for

any f ∈ H

L0(f ) ≤ L̂γ(f ) + 2RS(`γ ◦ H) +

√
ln(2/δ)

2m
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Reducing the class size : Empirical Investigation

Trained two-layer ReLU networks on SVHN
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Reducing the class size : Empirical Investigation

Trained two-layer ReLU networks on CIFAR-10

leads to defining

unit capacity : ||ui − u0i ||2
unit impact: ||vi ||2
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Reducing the class size : Empirical Investigation

unit capacity : ||ui − u0i ||2
unit impact: ||vi ||2

(a) CIFAR-10 (b) SVHN
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Reducing the function class size

These results lead to the definition of the following set of parameters

W = {(V ,U) | V ∈ Rc×h,U ∈ Rh×d , ||vi ||2 ≤ αi , ||ui − u0i ||2 ≤ βi}

New function class

FW = {f (x) = V [Ux ]+ | (V ,U) ∈ W}
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Bounding the Rademacher complexity

Theorem: Given a training set S = {xi}mi=1 and γ > 0, we have the

following bound on the Rademacher complexity

RS(`γ ◦ FW) ≤ 2
√

2c + 2

γm

h∑
j=1

αj(βj ||X ||F + ||u0j X ||2)

≤ 2
√

2c + 2

γm
||α||2

(
||β||2

√√√√ 1

m

m∑
i=1

||xi ||22 +

√√√√ 1

m

m∑
i=1

||U0xi ||22

)
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Proof Idea
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Bound on the generalization error

Theorem: For any h ≥ 2, γ > 0, δ ∈ (0, 1), and U0 ∈ Rh×d , with

probability 1− δ over the choice of the training set S = {xi}mi=1, for any

f (x) = V [Ux ]+, we have

L0(f ) ≤ L̂γ(f ) + O

(√
c ||V ||F (||U − U0||F ||X ||F + ||U0X ||F )

γm
+

√
h

m

)

≤ L̂γ(f ) + O

(√
c ||V ||F (||U − U0||F + ||U0||2)

√
1
m

∑m
i=1 ||xi ||22

γm
+

√
h

m

)
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Comparison with other Capacity Bounds
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Comparison with other Capacity Bounds
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Comparison with other Capacity Bounds
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Lower Bound

Under a certain set of assumptions, the upper bound on the Rademacher

complexity given is actually tight.
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Future Work

Although this bound is the only one that decreases with the size of the

network, it is still very loose, i.e. larger than the number of training

examples.
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Future Work

• Get tighter bounds

• Extend those results for deeper networks

• Reduce the class size even more by choice of hyperparameters and

optimization algorithms.
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Any questions?
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Thank you!

22



References

[1] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun,

and Nathan Srebro. Towards understanding the role of

over-parametrization in generalization of neural networks. CoRR,

abs/1805.12076, 2018. URL http://arxiv.org/abs/1805.12076.

23

http://arxiv.org/abs/1805.12076

	References

