Towards Understanding the Role of Over-Parametrization in Generalization of Neural Networks

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, Nathan Srebro [1]

Benjamin Dubois-Taine Dec 11th, 2019

The University of British Columbia

Why does deep learning work ?

Why does deep learning work ? So far : geometry of minima, implicit regularization of SGD, etc..

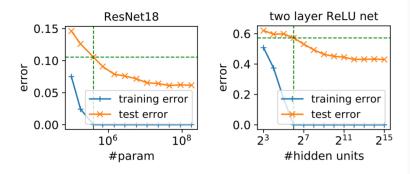
Why does deep learning work ? Today: Bounds on Generalization error.

Why does deep learning work ? Today: Bounds on Generalization error.

More specifically, bounds on the complexity of a certain class of neural networks.

Motivation behind use of two-layer ReLU network

- Study restricted to two-layer ReLU neural networks
- Following experiment on CIFAR-10



Consider two-layer fully connected ReLU networks with input dimension d, output dimension c, and number of hidden units h.

Prediction function is

 $f_{V,U}: \mathbb{R}^d o \mathbb{R}^c$ $f_{V,U}(x) = V[Ux]_+$

with $x \in \mathbb{R}^d$, $U \in \mathbb{R}^{h \times d}$, $V \in \mathbb{R}^{c \times h}$.

Margin operator

$$\mu : \mathbb{R}^{c} \times [c] \to \mathbb{R}$$
$$\mu(f(x), y) = f(x)[y] - \max_{i \neq y} f(x)[i]$$

Margin operator

$$\mu : \mathbb{R}^{c} \times [c] \to \mathbb{R}$$
$$\mu(f(x), y) = f(x)[y] - \max_{i \neq y} f(x)[i]$$

Ramp loss

$$\ell_{\gamma}(f(x),y) = egin{cases} 0 & \mu(f(x),y) > \gamma \ \mu(f(x),y)/\gamma & \mu(f(x),y) \in [0,\gamma] \ 1 & \mu(f(x),y) < 0 \end{cases}$$

Expected margin and empirical estimate

Ramp loss

$$\ell_{\gamma}(f(x), y) = egin{cases} 0 & \mu(f(x), y) > \gamma \ \mu(f(x), y) / \gamma & \mu(f(x), y) \in [0, \gamma] \ 1 & \mu(f(x), y) < 0 \end{cases}$$

Expected margin loss of f

$$L_{\gamma}(f) = \mathbb{E}_{(x,y)\sim D}[\ell_{\gamma}(f(x),y)]$$

Expected margin and empirical estimate

Ramp loss

$$\ell_{\gamma}(f(x), y) = egin{cases} 0 & \mu(f(x), y) > \gamma \ \mu(f(x), y) / \gamma & \mu(f(x), y) \in [0, \gamma] \ 1 & \mu(f(x), y) < 0 \end{cases}$$

Expected margin loss of f

$$L_{\gamma}(f) = \mathbb{E}_{(x,y)\sim D} \big[\ell_{\gamma}(f(x), y) \big]$$

Empirical estimate of expected margin loss

$$\hat{L}_{\gamma}(f) = \frac{1}{m} \sum_{i=1}^{m} \ell_{\gamma}(f(x_i), y_i)$$

Expected margin and empirical estimate

Ramp loss

$$\ell_{\gamma}(f(x), y) = \begin{cases} 0 & \mu(f(x), y) > \gamma \\ \mu(f(x), y) / \gamma & \mu(f(x), y) \in [0, \gamma] \\ 1 & \mu(f(x), y) < 0 \end{cases}$$

Expected margin loss of f

$$L_{\gamma}(f) = \mathbb{E}_{(x,y)\sim D} \big[\ell_{\gamma}(f(x), y) \big]$$

Empirical estimate of expected margin loss

$$\hat{L}_{\gamma}(f) = \frac{1}{m} \sum_{i=1}^{m} \ell_{\gamma}(f(x_i), y_i)$$

Write $L_0(f)$ and $\hat{L}_0(f)$ for expected risk and training error respectively.

- Proved tighter bounds on the expected risk $L_0(f)$
- Empirically showed that it is the only known upper bound that decreases with the number of hidden units

Definition The Rademacher Complexity of a class \mathcal{H} of functions with respect to the training set $S = \{z_i\}_{i=1}^m$ is defined as

$$\mathcal{R}_{\mathcal{S}}(\mathcal{H}) = \frac{1}{m} \mathbb{E}_{\sigma \sim \{\pm 1\}^m} \Big[\sup_{f \in \mathcal{H}} \sum_{i=1}^m \sigma_i f(z_i) \Big]$$

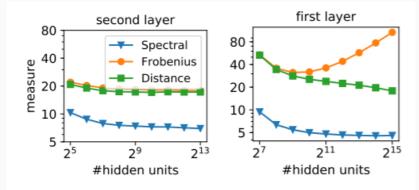
Definition The Rademacher Complexity of a class \mathcal{H} of functions with respect to the training set $S = \{z_i\}_{i=1}^m$ is defined as

$$\mathcal{R}_{\mathcal{S}}(\mathcal{H}) = rac{1}{m} \mathbb{E}_{\sigma \sim \{\pm 1\}^m} \Big[\sup_{f \in \mathcal{H}} \sum_{i=1}^m \sigma_i f(z_i) \Big]$$

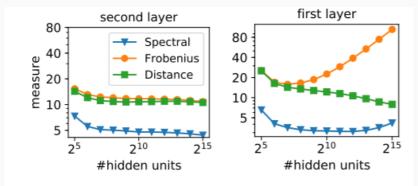
Theorem: For a function class \mathcal{H} , with probability $1 - \delta$, we have for any $f \in \mathcal{H}$

$$L_0(f) \leq \hat{L}_{\gamma}(f) + 2\mathcal{R}_{\mathcal{S}}(\ell_{\gamma} \circ \mathcal{H}) + \sqrt{rac{\ln(2/\delta)}{2m}}$$

Trained two-layer ReLU networks on SVHN

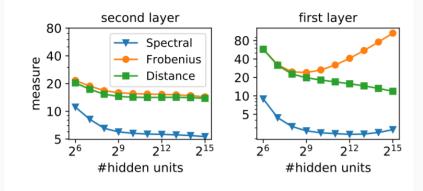


Trained two-layer ReLU networks on MNIST



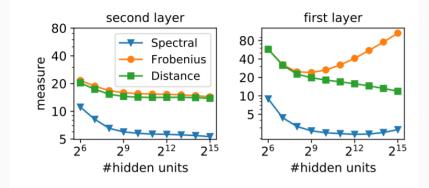
Reducing the class size : Empirical Investigation

Trained two-layer ReLU networks on CIFAR-10

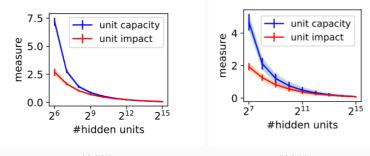


Reducing the class size : Empirical Investigation

Trained two-layer ReLU networks on CIFAR-10



leads to defining unit capacity: $||u_i - u_i^0||_2$ unit impact: $||v_i||_2$ unit capacity: $||u_i - u_i^0||_2$ unit impact: $||v_i||_2$



(a) CIFAR-10

(b) SVHN

These results lead to the definition of the following set of parameters

$$\mathcal{W} = \{ (V, U) \mid V \in \mathbb{R}^{c \times h}, U \in \mathbb{R}^{h \times d}, ||v_i||_2 \le \alpha_i, ||u_i - u_i^0||_2 \le \beta_i \}$$

These results lead to the definition of the following set of parameters

$$\mathcal{W} = \{ (V, U) \mid V \in \mathbb{R}^{c \times h}, U \in \mathbb{R}^{h \times d}, ||v_i||_2 \le \alpha_i, ||u_i - u_i^0||_2 \le \beta_i \}$$

New function class

$$\mathcal{F}_{\mathcal{W}} = \{f(x) = V[Ux]_+ \mid (V, U) \in \mathcal{W}\}$$

Theorem: Given a training set $S = \{x_i\}_{i=1}^m$ and $\gamma > 0$, we have the following bound on the Rademacher complexity

$$\begin{aligned} \mathcal{R}_{\mathcal{S}}(\ell_{\gamma} \circ \mathcal{F}_{\mathcal{W}}) &\leq \frac{2\sqrt{2c} + 2}{\gamma m} \sum_{j=1}^{n} \alpha_{j}(\beta_{j}||X||_{F} + ||u_{j}^{0}X||_{2}) \\ &\leq \frac{2\sqrt{2c} + 2}{\gamma m} ||\alpha||_{2} \left(||\beta||_{2} \sqrt{\frac{1}{m} \sum_{i=1}^{m} ||x_{i}||_{2}^{2}} + \sqrt{\frac{1}{m} \sum_{i=1}^{m} ||U^{0}x_{i}||_{2}^{2}} \right) \end{aligned}$$

Lemma 9 (Rademacher Decomposition). *Given a training set* $S = {x_i}_{i=1}^m$ and $\gamma > 0$, *Rademacher complexity of the class* \mathcal{F}_W *defined in equations* (5) *and* (4) *is bounded as follows:*

$$\begin{aligned} \mathcal{R}_{\mathcal{S}}(\ell_{\gamma} \circ \mathcal{F}_{\mathcal{W}}) &\leq \frac{2}{\gamma m} \sum_{j=1}^{h} \mathbf{\varepsilon}_{i} \in \{\pm 1\}^{c_{i}} i \in [m]} \left[\sup_{\|\mathbf{v}_{j}\|_{2} \leq \alpha_{j}} \sum_{i=1}^{m} (\rho_{ij} + \beta_{j} \|\mathbf{x}_{i}\|_{2}) \left\langle \boldsymbol{\xi}_{i}, \mathbf{v}_{j} \right\rangle \right] \\ &+ \frac{2}{\gamma m} \sum_{j=1}^{h} \mathbb{E}_{\mathbf{\xi} \in \{\pm 1\}^{m}} \left[\sup_{\|\mathbf{u}_{j} - \mathbf{u}_{j}^{0}\|_{2} \leq \beta_{j}} \sum_{i=1}^{m} \boldsymbol{\xi}_{i} \alpha_{j} \left\langle \mathbf{u}_{j}, \mathbf{x}_{i} \right\rangle \right]. \end{aligned}$$

Theorem: For any $h \ge 2$, $\gamma > 0$, $\delta \in (0, 1)$, and $U^0 \in \mathbb{R}^{h \times d}$, with probability $1 - \delta$ over the choice of the training set $S = \{x_i\}_{i=1}^m$, for any $f(x) = V[Ux]_+$, we have

$$\begin{split} L_{0}(f) &\leq \hat{L}_{\gamma}(f) + O\left(\frac{\sqrt{c}||V||_{F}(||U - U^{0}||_{F}||X||_{F} + ||U^{0}X||_{F})}{\gamma m} + \sqrt{\frac{h}{m}}\right) \\ &\leq \hat{L}_{\gamma}(f) + O\left(\frac{\sqrt{c}||V||_{F}(||U - U^{0}||_{F} + ||U^{0}||_{2})\sqrt{\frac{1}{m}\sum_{i=1}^{m}||x_{i}||_{2}^{2}}}{\gamma m} + \sqrt{\frac{h}{m}}\right) \end{split}$$

Comparison with other Capacity Bounds

#	Reference	Measure
(1)	Harvey et al. [9]	$\tilde{\Theta}(dh)$
(2)	Bartlett and Mendelson [3]	$ ilde{\Theta}\left(\left\ \mathbf{U} ight\ _{\infty,1}\left\ \mathbf{V} ight\ _{\infty,1} ight)$
(3)	Neyshabur et al. [20], Golowich et al. [7]	$ ilde{\Theta}\left(\left\ \mathbf{U} ight\ _{F}\left\ \mathbf{V} ight\ _{F} ight)$
(4)	Bartlett et al. [4], Golowich et al. [7]	$\tilde{\Theta}\left(\left\ \mathbf{U}\right\ _{2}\left\ \mathbf{V}-\mathbf{V}_{0}\right\ _{1,2}+\left\ \mathbf{U}-\mathbf{U}_{0}\right\ _{1,2}\left\ \mathbf{V}\right\ _{2}\right)$
(5)	Neyshabur et al. [23]	$\tilde{\Theta}\left(\left\ \mathbf{U}\right\ _{2}\left\ \mathbf{V}-\mathbf{V}_{0}\right\ _{F}+\sqrt{h}\left\ \mathbf{U}-\mathbf{U}_{0}\right\ _{F}\left\ \mathbf{V}\right\ _{2}\right)$
(6)	Theorem 2	$\widetilde{\Theta}\left(\left\ \mathbf{U}_{0}\right\ _{2}\left\ \mathbf{V}\right\ _{F}+\left\ \mathbf{U}-\mathbf{U}^{0}\right\ _{F}\left\ \mathbf{V}\right\ _{F}+\sqrt{h}\right)$

Table 1: Comparison with the existing generalization measures presented for the case of two layer ReLU networks with constant number of outputs and constant margin.

Comparison with other Capacity Bounds

#	Reference	Measure
(1)	Harvey et al. [9]	$\tilde{\Theta}(dh)$
(2)	Bartlett and Mendelson [3]	$ ilde{\Theta}\left(\left\ \mathbf{U} ight\ _{\infty,1}\left\ \mathbf{V} ight\ _{\infty,1} ight)$
(3)	Neyshabur et al. [20], Golowich et al. [7]	$ ilde{\Theta}\left(\left\ \mathbf{U} ight\ _{F}\left\ \mathbf{V} ight\ _{F} ight)$
(4)	Bartlett et al. [4], Golowich et al. [7]	$\tilde{\Theta}\left(\left\ \mathbf{U}\right\ _{2}\left\ \mathbf{V}-\mathbf{V}_{0}\right\ _{1,2}+\left\ \mathbf{U}-\mathbf{U}_{0}\right\ _{1,2}\left\ \mathbf{V}\right\ _{2}\right)$
(5)	Neyshabur et al. [23]	$\tilde{\Theta}\left(\left\ \mathbf{U}\right\ _{2}\left\ \mathbf{V}-\mathbf{V}_{0}\right\ _{F}+\sqrt{h}\left\ \mathbf{U}-\mathbf{U}_{0}\right\ _{F}\left\ \mathbf{V}\right\ _{2}\right)$
(6)	Theorem 2	$\widetilde{\Theta}\left(\left\ \mathbf{U}_{0}\right\ _{2}\left\ \mathbf{V}\right\ _{F}+\left\ \mathbf{U}-\mathbf{U}^{0}\right\ _{F}\left\ \mathbf{V}\right\ _{F}+\sqrt{h}\right)$

Table 1: Comparison with the existing generalization measures presented for the case of two layer ReLU networks with constant number of outputs and constant margin.

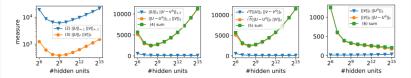
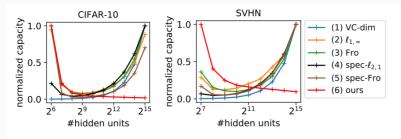


Figure 3: Behavior of terms presented in Table 1 with respect to the size of the network trained on CIFAR-10.

Comparison with other Capacity Bounds

#	Reference	Measure
(1)	Harvey et al. [9]	$\tilde{\Theta}(dh)$
(2)	Bartlett and Mendelson [3]	$ ilde{\Theta}\left(\left\ \mathbf{U} ight\ _{\infty,1}\left\ \mathbf{V} ight\ _{\infty,1} ight)$
(3)	Neyshabur et al. [20], Golowich et al. [7]	$ ilde{\Theta}\left(\left\ \mathbf{U} ight\ _{F}\left\ \mathbf{V} ight\ _{F} ight)$
(4)	Bartlett et al. [4], Golowich et al. [7]	$\tilde{\Theta}\left(\left\ \mathbf{U}\right\ _{2}\left\ \mathbf{V}-\mathbf{V}_{0}\right\ _{1,2}+\left\ \mathbf{U}-\mathbf{U}_{0}\right\ _{1,2}\left\ \mathbf{V}\right\ _{2}\right)$
(5)	Neyshabur et al. [23]	$\tilde{\Theta}\left(\left\ \mathbf{U}\right\ _{2}\left\ \mathbf{V}-\mathbf{V}_{0}\right\ _{F}+\sqrt{h}\left\ \mathbf{U}-\mathbf{U}_{0}\right\ _{F}\left\ \mathbf{V}\right\ _{2}\right)$
(6)	Theorem 2	$\tilde{\Theta}\left(\left\ \mathbf{U}_{0}\right\ _{2}\left\ \mathbf{V}\right\ _{F}+\left\ \mathbf{U}-\mathbf{U}^{0}\right\ _{F}\left\ \mathbf{V}\right\ _{F}+\sqrt{h}\right)$

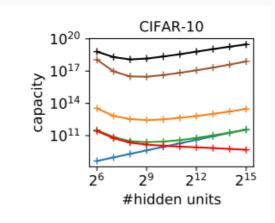
Table 1: Comparison with the existing generalization measures presented for the case of two layer ReLU networks with constant number of outputs and constant margin.



Under a certain set of assumptions, the upper bound on the Rademacher complexity given is actually tight.

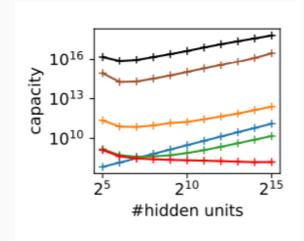
Future Work

Although this bound is the only one that decreases with the size of the network, it is still very loose, i.e. larger than the number of training examples.



Future Work

Although this bound is the only one that decreases with the size of the network, it is still very loose, i.e. larger than the number of training examples.



- Get tighter bounds
- Extend those results for deeper networks
- Reduce the class size even more by choice of hyperparameters and optimization algorithms.

Any questions?

Thank you!

References

 Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards understanding the role of over-parametrization in generalization of neural networks. *CoRR*, abs/1805.12076, 2018. URL http://arxiv.org/abs/1805.12076.