Learning Representations for Counterfactual Inference

Fredrik D.Johansson, Uri Shalit, David Sontag [\[1\]](#page-77-0)

Benjamin Dubois-Taine

Feb 12th, 2020

The University of British Columbia

Define the following:

- X the set of contexts
- τ the set of possible actions
- Y the set of possible outcomes

Define the following:

- \mathcal{X} the set of contexts
- τ the set of possible actions
- $\mathcal Y$ the set of possible outcomes

For all $t \in \mathcal{T}$, denote $Y_t(x) \in \mathcal{Y}$ the potential outcome for $x \in \mathcal{X}$.

Define the following:

- $\mathcal X$ the set of contexts
- τ the set of possible actions
- $\mathcal Y$ the set of possible outcomes

For all $t \in \mathcal{T}$, denote $Y_t(x) \in \mathcal{Y}$ the potential outcome for $x \in \mathcal{X}$.

Fundamental problem of causal inference: we can only observe $Y_t(x)$ for one specific value of t .

We will only look at the case where $\mathcal{T} = \{0, 1\}.$ Two quantities of interest are then

• Individual Treatment Effect

$$
ITE(x) = Y_1(x) - Y_0(x)
$$

• Average Treatment Effect

$$
ATE = \mathbb{E}_{x \sim p(x)} \Big[ITE(x) \Big]
$$

Finally, we define

- \bullet the observed outcome associated with x as the factual outcome, denoted $y^F(x)$.
- \bullet the unobserved outcome associated with x as the **counterfactual outcome**, denoted $y^{CF}(x)$.

Come up with a framework to train models for factual and counterfactual inference.

• Given *n* samples $\{x_i, t_i, y_i^F\}_{i=1}^n$, where $y_i^F = t_i Y_1(x_i) + (1 - t_i) Y_0(x_i)$

- Given *n* samples $\{x_i, t_i, y_i^F\}_{i=1}^n$, where $y_i^F = t_i Y_1(x_i) + (1 t_i) Y_0(x_i)$
- Learn a function $h: \mathcal{X} \times \mathcal{T} \rightarrow \mathcal{Y}$ such that

$$
h(x_i, t_i) \approx y_i^F
$$

- Given *n* samples $\{x_i, t_i, y_i^F\}_{i=1}^n$, where $y_i^F = t_i Y_1(x_i) + (1 t_i) Y_0(x_i)$
- Learn a function $h: \mathcal{X} \times \mathcal{T} \rightarrow \mathcal{Y}$ such that

$$
h(x_i,t_i) \approx y_i^F
$$

• To compute ITE on training data we could do

$$
\hat{\mathsf{TTE}}(x_i) = \begin{cases} y_i^F - h(x_i, t_i - 1) & \text{if } t_i = 1 \\ h(x_i, 1 - t_i) - y_i^F & \text{if } t_i = 0 \end{cases}
$$

- Given *n* samples $\{x_i, t_i, y_i^F\}_{i=1}^n$, where $y_i^F = t_i Y_1(x_i) + (1 t_i) Y_0(x_i)$
- Learn a function $h: \mathcal{X} \times \mathcal{T} \rightarrow \mathcal{Y}$ such that

$$
h(x_i,t_i) \approx y_i^F
$$

• To compute ITE on training data we could do

$$
\hat{\text{ITE}}(x_i) = \begin{cases} y_i^F - h(x_i, t_i - 1) & \text{if } t_i = 1 \\ h(x_i, 1 - t_i) - y_i^F & \text{if } t_i = 0 \end{cases}
$$

What is the problem with this ?

• We are training on the set

$$
\hat{P}^F = \{(x_i, t_i)\}_{i=1}^n
$$

with $\hat{P}^{\bar{F}}\sim P^{\bar{F}}$, the empirical **factual distribution**.

• We are training on the set

$$
\hat{P}^F = \{(x_i, t_i)\}_{i=1}^n
$$

with $\hat{P}^{\bar{F}}\sim P^{\bar{F}}$, the empirical **factual distribution**.

• We are inferring on the set

$$
\hat{P}^{CF} = \{(x_i, 1-t_i)\}_{i=1}^n
$$

with $\hat{P}^{CF} \sim P^{CF}$, the empirical **counterfactual distribution**.

• We are training on the set

$$
\hat{P}^F = \{(x_i, t_i)\}_{i=1}^n
$$

with $\hat{P}^{\bar{F}}\sim P^{\bar{F}}$, the empirical **factual distribution**.

• We are inferring on the set

$$
\hat{P}^{CF} = \{(x_i, 1-t_i)\}_{i=1}^n
$$

with $\hat{P}^{CF} \sim P^{CF}$, the empirical **counterfactual distribution**.

We do not want to make assumptions on the treatment assignment.

The authors propose a general approach for causal inference

 $\bullet\,$ Learn a representation $\Phi:\mathcal{X}\rightarrow\mathbb{R}^d$.

The authors propose a general approach for causal inference

- $\bullet\,$ Learn a representation $\Phi:\mathcal{X}\rightarrow\mathbb{R}^d$.
- Learn a function h from a hypothesis class H , such that $h:\mathbb{R}^d\times\mathcal{T}\rightarrow\mathbb{R}$ predicts the outcome.

• being able to achieve low-error prediction on the factual outcomes

- being able to achieve low-error prediction on the factual outcomes
- being able to achieve low-error prediction on unobserved counterfactual outcomes.

- being able to achieve low-error prediction on the factual outcomes
- being able to achieve low-error prediction on unobserved counterfactual outcomes.
- the distribution of treatment populations under Φ are similar/balanced.

- being able to achieve low-error prediction on the factual outcomes
- being able to achieve low-error prediction on unobserved counterfactual outcomes.
- the distribution of treatment populations under Φ are similar/balanced.

• That is simple, we can simply compute

$$
\frac{1}{n}\sum_{i=1}^n |h(\Phi(x_i), t_i) - y_i^F|
$$

• That is simple, we can simply compute

$$
\frac{1}{n}\sum_{i=1}^n |h(\Phi(x_i), t_i) - y_i^F|
$$

How to evaluate performance of (Φ, h) on counterfactual outcomes ?

• That is simple, we can simply compute

$$
\frac{1}{n}\sum_{i=1}^n |h(\Phi(x_i), t_i) - y_i^F|
$$

How to evaluate performance of (Φ, h) on counterfactual outcomes ?

• For any x_i , compute

$$
j(i) = \operatorname*{arg\,min}_{j \in \{1,\ldots,n\} \text{ with } t_j = 1-t_i} d(x_i, x_j)
$$

• That is simple, we can simply compute

$$
\frac{1}{n}\sum_{i=1}^n |h(\Phi(x_i), t_i) - y_i^F|
$$

How to evaluate performance of (Φ, h) on counterfactual outcomes ?

• For any x_i , compute

$$
j(i) = \operatorname*{arg\,min}_{j \in \{1,\ldots,n\} \text{ with } t_j = 1-t_i} d(x_i, x_j)
$$

• Then the error term is

$$
\frac{1}{n}\sum_{i=1}^n |h(\Phi(x_i),1-t_i)-y_{j(i)}^F|
$$

• By controlling the discrepancy between them, namely given our hypothesis class H and a loss function L , we have

$$
\mathsf{disc}_{\mathcal{H}}(\hat{\mathsf{P}}_\Phi^\mathsf{F},\hat{\mathsf{P}}_\Phi^\mathsf{CF}) = \max_{\beta,\beta' \in \mathcal{H}} \left[\mathop{\mathbb{E}}_{z \sim \hat{\mathsf{P}}_\Phi^\mathsf{F}} [L(\beta(z),\beta'(z))] - \mathop{\mathbb{E}}_{z \sim \hat{\mathsf{P}}_\Phi^\mathsf{CF}} [L(\beta(z),\beta'(z))] \right]
$$

• By controlling the discrepancy between them, namely given our hypothesis class H and a loss function L , we have

$$
\mathsf{disc}_{\mathcal{H}}(\hat{\mathsf{P}}_\Phi^\mathsf{F},\hat{\mathsf{P}}_\Phi^\mathsf{CF}) = \max_{\beta,\beta' \in \mathcal{H}} \left[\mathop{\mathbb{E}}_{z \sim \hat{\mathsf{P}}_\Phi^\mathsf{F}} [L(\beta(z),\beta'(z))] - \mathop{\mathbb{E}}_{z \sim \hat{\mathsf{P}}_\Phi^\mathsf{CF}} [L(\beta(z),\beta'(z))] \right]
$$

• In this paper we only deal L being the square loss

• By controlling the discrepancy between them, namely given our hypothesis class H and a loss function L , we have

$$
\mathsf{disc}_{\mathcal{H}}(\hat{\mathsf{P}}_\Phi^\mathsf{F},\hat{\mathsf{P}}_\Phi^\mathsf{CF}) = \max_{\beta,\beta' \in \mathcal{H}} \left[\mathop{\mathbb{E}}_{z \sim \hat{\mathsf{P}}_\Phi^\mathsf{F}} [L(\beta(z),\beta'(z))] - \mathop{\mathbb{E}}_{z \sim \hat{\mathsf{P}}_\Phi^\mathsf{CF}} [L(\beta(z),\beta'(z))] \right]
$$

- \bullet In this paper we only deal L being the square loss
- Discrepancy in the case of linear hypotheses class, namely $\mathcal{H} \subset \mathbb{R}^{d+1}$, has a closed form formula.

• By controlling the discrepancy between them, namely given our hypothesis class H and a loss function L , we have

$$
\mathsf{disc}_{\mathcal{H}}(\hat{\mathsf{P}}_\Phi^\mathsf{F},\hat{\mathsf{P}}_\Phi^\mathsf{CF}) = \max_{\beta,\beta' \in \mathcal{H}} \left[\mathop{\mathbb{E}}_{z \sim \hat{\mathsf{P}}_\Phi^\mathsf{F}} [L(\beta(z),\beta'(z))] - \mathop{\mathbb{E}}_{z \sim \hat{\mathsf{P}}_\Phi^\mathsf{CF}} [L(\beta(z),\beta'(z))] \right]
$$

- \bullet In this paper we only deal L being the square loss
- Discrepancy in the case of linear hypotheses class, namely $\mathcal{H} \subset \mathbb{R}^{d+1}$, has a closed form formula.
- From now on we restrict the study to linear hypotheses.

This gives rise to the following objective function

$$
B_{\mathcal{H},\alpha,\gamma}(\Phi,h) = \frac{1}{n} \sum_{i=1}^{n} |h(\Phi(x_i), t_i) - y_i^F|
$$

+
$$
\frac{\gamma}{n} \sum_{i=1}^{n} |h(\Phi(x_i), 1 - t_i) - y_{j(i)}^F| +
$$

+
$$
\alpha \text{disc}_{\mathcal{H}}(\hat{P}_{\Phi}^F, \hat{P}_{\Phi}^{CF})
$$

This gives rise to the following objective function

$$
B_{\mathcal{H},\alpha,\gamma}(\Phi,h) = \frac{1}{n} \sum_{i=1}^{n} |h(\Phi(x_i), t_i) - y_i^F|
$$

+
$$
\frac{\gamma}{n} \sum_{i=1}^{n} |h(\Phi(x_i), 1 - t_i) - y_{j(i)}^F| +
$$

+
$$
\alpha \text{disc}_{\mathcal{H}}(\hat{P}_{\Phi}^F, \hat{P}_{\Phi}^{CF})
$$

Algorithm 1 Balancing counterfactual regression

\n- 1: **Input:**
$$
X, T, Y^F; \mathcal{H}, \mathcal{N}; \alpha, \gamma, \lambda
$$
\n- 2: $\Phi^*, g^* = \underset{\Phi \in \mathcal{N}, g \in \mathcal{H}}{\arg \min} B_{\mathcal{H}, \alpha, \gamma}(\Phi, g)$ (2)
\n- 3: $h^* = \underset{\Phi \in \mathcal{N}, g \in \mathcal{H}}{\arg \min}_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n (h(\Phi, t_i) - y_i^F)^2 + \lambda \|h\|_{\mathcal{H}}$
\n- 4: **Output:** h^*, Φ^*
\n

• The former analysis gave an intuition on the form of the objective function $B_{H,\alpha,\gamma}(\Phi,h)$

- The former analysis gave an intuition on the form of the objective function $B_{H,\alpha,\gamma}(\Phi,h)$
- Existence of a theoretical bound

A Theoretical Bound

Theorem 1. For a sample $\{(x_i, t_i, u^F)\}_{i=1}^n$, $x_i \in \mathcal{X}, t_i \in$ $\{0, 1\}$ and $u_i \in \mathcal{V}$ and a given representation function Φ : $\mathcal{X} \rightarrow \mathbb{R}^d$ let $\hat{P}F = (\Phi(x_1), t_2), \dots, (\Phi(x_n), t_n)$ $\hat{P}CF =$ $(\Phi(x_1), 1-t_1), \ldots, (\Phi(x_n), 1-t_n)$. We assume that X is a metric space with metric d, and that the potential outcome functions $Y_0(x)$ and $Y_1(x)$ are Linschitz continuous with constants K_0 and K_2 respectively, such that $d(x_1, x_2)$ $c \implies |Y_t(x_0) - Y_t(x_0)| \leq K_t \cdot c$ for $t = 0, 1$.

Let $\mathcal{H}_1 \subset \mathbb{R}^{d+1}$ be the space of linear functions β : $\mathcal{X} \times \{0,1\} \rightarrow \mathcal{Y}$, and for $\beta \in \mathcal{H}_l$, let $\mathcal{L}_P(\beta) = \mathbb{E}_{(x,t,y)\sim P} [L(\beta(x,t),y)]$ be the expected loss of β over distribution P. Let $r =$ $max(\mathbb{E}_{(x,t)\sim P^F}[\|[\Phi(x),t]\|_2], \mathbb{E}_{(x,t)\sim P^{\text{CF}}}[\|[\Phi(x),t]\|_2])$ be the maximum expected radius of the distributions. For $\lambda > 0$, let $\hat{\beta}^F(\Phi) = \arg\min_{\beta \in \mathcal{H}_1} \mathcal{L}_{PF}(\beta) + \lambda \|\beta\|_{2}^2$ and $\hat{\beta}^{CF}(\Phi)$ similarly for \hat{P}_{Σ}^{CF} , i.e. $\hat{\beta}^{F}(\Phi)$ and $\hat{\beta}^{CF}(\Phi)$ are the ridge regression solutions for the factual and counterfactual empirical distributions, respectively.

Let $\hat{u}^F(\Phi, h) = h^{\top}[\Phi(x_i), t_i]$ and $\hat{u}^{CF}(\Phi, h) =$ $h^{\top}[\Phi(x_i), 1-t_i]$ be the outputs of the hypothesis $h \in$ \mathcal{H}_1 over the representation $\Phi(x)$ for the factual and counterfactual settings of t., respectively. Finally, for each $i, j \in \{1, \ldots n\}$, let $d_{i,j} \equiv d(x_i, x_j)$ and $i(i) \in$ $\arg \min_{i \in I} \lim_{n \to \infty} \sum_{i=1}^n d(x_i, x_i)$ be the nearest neighbor in X of x_i among the group that received the opposite treatment from unit i. Then for both $Q = P^F$ and $Q = P^{CF}$ we have:

$$
\frac{\lambda}{\mu r} (\mathcal{L}_Q(\hat{\beta}^F(\Phi)) - \mathcal{L}_Q(\hat{\beta}^{CF}(\Phi)))^2 \leq
$$

$$
disc_{\mathcal{H}_l}(\hat{P}_\Phi^F, \hat{P}_\Phi^{CF}) +
$$
(3)

$$
\min_{h \in \mathcal{H}_l} \frac{1}{n} \sum_{i=1}^n (|\hat{y}_i^F(\Phi, h) - y_i^F| + |\hat{y}_i^{CF}(\Phi, h) - y_i^{CF}|) \le
$$

LAD ACD.

$$
^{(4)}
$$

$$
disc_{\mathcal{H}_{\ell}}(P_{\Phi}^{\epsilon}, P_{\Phi}^{\epsilon^*}) +
$$

\n
$$
\min_{h \in \mathcal{H}_{\ell}} \frac{1}{n} \sum_{i=1}^{n} \left(|\hat{y}_{i}^{F}(\Phi, h) - y_{i}^{F}| + |\hat{y}_{i}^{CF}(\Phi, h) - y_{j(i)}^{F}| \right) +
$$
\n(5)

$$
\frac{K_0}{n}\sum_{i:t_i=1}\mathrm{d}_{i,j(i)}+\frac{K_1}{n}\sum_{i:t_i=0}\mathrm{d}_{i,j(i)}.\quad \ \hspace{2cm} (6)
$$

A Theoretical Bound

• Let Φ be any representation function.
- Let Φ be any representation function.
- Let $\mathcal{H}_\ell = \mathbb{R}^{d+1}$ be the space of linear functions.

- Let $Φ$ be any representation function.
- Let $\mathcal{H}_\ell = \mathbb{R}^{d+1}$ be the space of linear functions.
- $\bullet\,$ Let $\hat{\beta}^{F}(\Phi)=$ arg min $\beta \in {\cal H}_\ell$ E (x,t,y) ∼ \hat{P}_{Φ}^{F} $\left[L(\beta(x,t), y) \right] + \lambda ||\beta||_2^2$, the ridge regression solutions for the factual empirical distributions.
- Define $\hat{\beta}^{CF}(\Phi)$ similarly

- Let Φ be any representation function.
- Let $\mathcal{H}_\ell = \mathbb{R}^{d+1}$ be the space of linear functions.
- $\bullet\,$ Let $\hat{\beta}^{F}(\Phi)=$ arg min $\beta \in {\cal H}_\ell$ E (x,t,y) ∼ \hat{P}_{Φ}^{F} $\left[L(\beta(x,t), y) \right] + \lambda ||\beta||_2^2$, the ridge regression solutions for the factual empirical distributions.
- Define $\hat{\beta}^{CF}(\Phi)$ similarly
- \bullet The theorem then states that for both $Q = P^F$ and $Q = P^{FC}$, we have

$$
c_1 (\mathcal{L}_{Q}(\hat{\beta}^F(\Phi)) - \mathcal{L}_{Q}(\hat{\beta}^{CF}(\Phi)))
$$

\n
$$
\leq \min_{h \in \mathcal{H}_{\ell}} \frac{1}{n} \sum_{i=1}^n |h(\Phi(x_i), t_i) - y_i^F| + |h(\Phi(x_i), 1 - t_i) - y_{j(i)}^F|
$$

\n
$$
+ \text{disc}_{\mathcal{H}_{\ell}}(\hat{\rho}_{\Phi}^F, \hat{\rho}_{\Phi}^{CF})
$$

\n
$$
+ \frac{K_0}{n} \sum_{i:t_i=1} d(x_i, x_{j(i)}) + \frac{K_1}{n} \sum_{i:t_i=0} d(x_i, x_{j(i)})
$$

The theorem states that for both $Q = P^F$ and $Q = P^{FC}$, we have $c_1 \bigl(\mathcal{L}_{Q} (\hat{\beta}^F (\Phi)) - \mathcal{L}_{Q} (\hat{\beta}^{CF} (\Phi)) \bigr)$ $\leq \min_{h \in \mathcal{H}_{\ell}}$ 1 n $\sum_{n=1}^{\infty}$ $i=1$ $|h(\Phi(x_i), t_i) - y_i^F| + |h(\Phi(x_i), 1 - t_i) - y_i^{CF}|$ $+\textsf{disc}_{\mathcal{H}_{\ell}}(\hat{P}_{\Phi}^F,\hat{P}_{\Phi}^{CF})$ $+\frac{K_0}{\sqrt{2}}$ n $\sum_{i,j=1}^n d(x_i, x_{j(i)}) + \frac{K_1}{n}$ $i:t_i =1$ $\sum d(x_i, x_{j(i)})$ $i:t_i =0$

Which is close to

$$
B_{\mathcal{H},\alpha,\gamma}(\Phi,h) = \frac{1}{n} \sum_{i=1}^{n} |h(\Phi(x_i), t_i) - y_i^F|
$$

+
$$
\frac{\gamma}{n} \sum_{i=1}^{n} |h(\Phi(x_i), 1 - t_i) - y_{j(i)}^F| +
$$

+
$$
\alpha \text{disc}_{\mathcal{H}}(\hat{P}_{\Phi}^F, \hat{P}_{\Phi}^{CF})
$$

• Two approaches are proposed.

- Two approaches are proposed.
- First one is by directly re-weighting the features of X , namely

$$
\Phi(x) = Wx
$$

where W is a diagonal matrix with $w_i\geq 0, \ \sum_i w_i=1.$

- Two approaches are proposed.
- First one is by directly re-weighting the features of X , namely

$$
\Phi(x) = Wx
$$

where W is a diagonal matrix with $w_i\geq 0, \ \sum_i w_i=1.$

• One can then show that

$$
\text{disc}_{\mathcal{H}_{\ell}}(\hat{P}_{\Phi}^F, \hat{P}_{\Phi}^{CF}) \approx ||W(p \sum_{i:t_i=1} x_i - (1-p) \sum_{i:t_i=0} x_i||_2)
$$

- Two approaches are proposed.
- First one is by directly re-weighting the features of X , namely

$$
\Phi(x) = Wx
$$

where W is a diagonal matrix with $w_i\geq 0, \ \sum_i w_i=1.$

• One can then show that

$$
\text{disc}_{\mathcal{H}_{\ell}}(\hat{P}_{\Phi}^F, \hat{P}_{\Phi}^{CF}) \approx ||W(p \sum_{i:t_i=1} x_i - (1-p) \sum_{i:t_i=0} x_i||_2)
$$

• Features that differ a lot between treatment groups will receive a smaller weight

- Two approaches are proposed.
- Second is with Neural Networks

- Two approaches are proposed.
- Second is with Neural Networks

- Two approaches are proposed.
- Second is with Neural Networks

• First d_r layers learn the representation Φ

- Two approaches are proposed.
- Second is with Neural Networks

- First d_r layers learn the representation Φ
- The d_0 layers learn h given t

- Two approaches are proposed.
- Second is with Neural Networks

- First d_r layers learn the representation Φ
- The d_0 layers learn h given t
- Given Φ, the discrepancy is calculated
- We don't have the data !
- Need to simulate

 \bullet The units x_i are news items in $\mathbb{N}^\mathcal{V}$, i.e. word counts from the NY Times corpus, with $n = 5000$.

- \bullet The units x_i are news items in $\mathbb{N}^\mathcal{V}$, i.e. word counts from the NY Times corpus, with $n = 5000$.
- The representation $\Phi(x_i) \in \mathbb{R}^{50}$ is the topic distribution of x_i , obtained using a LDA model with 50 topics.
- \bullet The units x_i are news items in $\mathbb{N}^\mathcal{V}$, i.e. word counts from the NY Times corpus, with $n = 5000$.
- The representation $\Phi(x_i) \in \mathbb{R}^{50}$ is the topic distribution of x_i , obtained using a LDA model with 50 topics.
- The treatment t_i represents what device was used to read the news item.

 $t_i = 1$ for mobile, $t_i = 0$ for desktop.

- \bullet The units x_i are news items in $\mathbb{N}^\mathcal{V}$, i.e. word counts from the NY Times corpus, with $n = 5000$.
- The representation $\Phi(x_i) \in \mathbb{R}^{50}$ is the topic distribution of x_i , obtained using a LDA model with 50 topics.
- The treatment t_i represents what device was used to read the news item.

 $t_i = 1$ for mobile, $t_i = 0$ for desktop.

 $\bullet\,$ the factual outcome $y^F(x_i)\in\mathbb{R}$ is the readers experience of x_i

The News Dataset

The outcomes are generated as follows

• Pick two centroids in topic space, z_1 at random, and z_0 is the average of topic distribution

The News Dataset

The outcomes are generated as follows

- Pick two centroids in topic space, z_1 at random, and z_0 is the average of topic distribution
- The generated outcome of x_i with treatment t_i is then

$$
y(x_i) = C(z(x_i)^T z_0 + t_i z(x_i)^T z_1)
$$

The News Dataset

The outcomes are generated as follows

- Pick two centroids in topic space, z_1 at random, and z_0 is the average of topic distribution
- The generated outcome of x_i with treatment t_i is then

$$
y(x_i) = C(z(x_i)^T z_0 + t_i z(x_i)^T z_1)
$$

• Finally, we assume that the assignment of a news item x_i to a device t_i is biased towards the preferred devices, i.e.

$$
p(t_i = 1 | x_i) = \frac{e^{\kappa z(x_i)^T z_1}}{e^{\kappa z(x_i)^T z_0} + e^{\kappa z(x_i)^T z_1}}
$$

• The balanced linear regression model (BLR), i.e. $\Phi(x) = Wx$.

- The balanced linear regression model (BLR), i.e. $\Phi(x) = Wx$.
- A neural network with 4 layers to learn the representation, and a single linear output layer, BNN-4-0.

- The balanced linear regression model (BLR), i.e. $\Phi(x) = Wx$.
- A neural network with 4 layers to learn the representation, and a single linear output layer, BNN-4-0.
- A neural network with 2 layers to learn the representation, followed by 2 ReLU layers and a single layer. (BNN-2-2)

- The balanced linear regression model (BLR), i.e. $\Phi(x) = Wx$.
- A neural network with 4 layers to learn the representation, and a single linear output layer, BNN-4-0.
- A neural network with 2 layers to learn the representation, followed by 2 ReLU layers and a single layer. (BNN-2-2)
- Different classical supervised learning regression algorithms like linear regression, doubly robust linear regression, BART, etc..

The quantities measured to evaluate the models are

• The RMSE of the estimated individual treatment effect

$$
\epsilon_{\text{ITE}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \text{ITE}(x_i)^2}
$$

The quantities measured to evaluate the models are

• The RMSE of the estimated individual treatment effect

$$
\epsilon_{\text{ITE}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \text{ITE}(x_i)^2}
$$

• the absolute error in estimated average treatment effect

$$
\epsilon_{\text{ATE}} = \frac{1}{n} \sum_{i=1}^{n} \hat{\text{ITE}}(x_i)
$$

The quantities measured to evaluate the models are

• The RMSE of the estimated individual treatment effect

$$
\epsilon_{\text{ITE}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \text{ITE}(x_i)^2}
$$

• the absolute error in estimated average treatment effect

$$
\epsilon_{\text{ATE}} = \frac{1}{n} \sum_{i=1}^{n} \hat{\text{ITE}}(x_i)
$$

• The Precision in Estimation of Heterogeneous Effect,

PEHE =
$$
\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_1(x_i) - \hat{y}_0(x_i) - (Y_1(x_i) - Y_0(x_i)))}
$$

Table 2. News. Results and standard errors for 50 repeated experiments. (Lower is better.) Proposed methods: BLR, BNN-4-0 and BNN-2-2. \dagger (Chipman et al., 2010)

• A similar experiment was conducted on clinical data from the Infant Health and Devlopment Program (IDHP).

- A similar experiment was conducted on clinical data from the Infant Health and Devlopment Program (IDHP).
- randomized treatment assignment

- A similar experiment was conducted on clinical data from the Infant Health and Devlopment Program (IDHP).
- randomized treatment assignment
- introduced imbalance by removing a nonrandom portion of the treatment group.

- A similar experiment was conducted on clinical data from the Infant Health and Devlopment Program (IDHP).
- randomized treatment assignment
- introduced imbalance by removing a nonrandom portion of the treatment group.

- A similar experiment was conducted on clinical data from the Infant Health and Devlopment Program (IDHP).
- randomized treatment assignment
- introduced imbalance by removing a nonrandom portion of the treatment group.

Figure 4. Error in estimated treatment effect (ITE, PEHE) and counterfactual response (RMSE) on the IHDP dataset. Sweep over α for the BNN-2-2 neural network model.

• This paper introduced models learning balanced representations for counterfactual inference, based on practical and theoretical evidence

• This paper introduced models learning balanced representations for counterfactual inference, based on practical and theoretical evidence

Some open questions
• This paper introduced models learning balanced representations for counterfactual inference, based on practical and theoretical evidence

Some open questions

• generalize this for more than 2 treatments

• This paper introduced models learning balanced representations for counterfactual inference, based on practical and theoretical evidence

Some open questions

- generalize this for more than 2 treatments
- allow for other distribution measures

• This paper introduced models learning balanced representations for counterfactual inference, based on practical and theoretical evidence

Some open questions

- generalize this for more than 2 treatments
- allow for other distribution measures
- allow for non-linear hypotheses

Any questions?

Thank you!

[References](#page-77-0)

[1] Fredrik Johansson, Uri Shalit, and David Sontag. Learning representations for counterfactual inference. In International conference on machine learning, pages 3020–3029, 2016.