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Setting of Causal Inference

Define the following:

• X the set of contexts

• T the set of possible actions

• Y the set of possible outcomes

For all t ∈ T , denote Yt(x) ∈ Y the potential outcome for x ∈ X .

Fundamental problem of causal inference: we can only observe Yt(x)

for one specific value of t.
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More setting

We will only look at the case where T = {0, 1}.
Two quantities of interest are then

• Individual Treatment Effect

ITE(x) = Y1(x)− Y0(x)

• Average Treatment Effect

ATE = Ex∼p(x)

[
ITE(x)

]
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More settings

Finally, we define

• the observed outcome associated with x as the factual outcome,

denoted yF (x).

• the unobserved outcome associated with x as the counterfactual

outcome, denoted yCF (x).
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Goal of The Paper

Come up with a framework to train models for factual and counterfactual

inference.

4



A First Supervised Approach

• Given n samples {xi , ti , yF
i }ni=1, where yF

i = tiY1(xi ) + (1− ti )Y0(xi )

• Learn a function h : X × T → Y such that

h(xi , ti ) ≈ yF
i

• To compute ITE on training data we could do

ˆITE(xi ) =

{
yF
i − h(xi , ti − 1) if ti = 1

h(xi , 1− ti )− yF
i if ti = 0

What is the problem with this ?
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• We are training on the set

P̂F = {(xi , ti )}ni=1

with P̂F ∼ PF , the empirical factual distribution.

• We are inferring on the set

P̂CF = {(xi , 1− ti )}ni=1

with P̂CF ∼ PCF , the empirical counterfactual distribution.

We do not want to make assumptions on the treatment assignment.
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The Approach Proposed

The authors propose a general approach for causal inference

• Learn a representation Φ : X → Rd .

• Learn a function h from a hypothesis class H, such that

h : Rd × T → R predicts the outcome.
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The Approach Proposed

We want the built representation (Φ, h) to balance the trade-offs between

• being able to achieve low-error prediction on the factual outcomes

• being able to achieve low-error prediction on unobserved

counterfactual outcomes.

• the distribution of treatment populations under Φ are

similar/balanced.
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How to evaluate performance of (Φ, h) on factual outcomes ?

• That is simple, we can simply compute

1

n

n∑
i=1

|h(Φ(xi ), ti )− yF
i |

How to evaluate performance of (Φ, h) on counterfactual outcomes ?

• For any xi , compute

j(i) = arg min
j∈{1,...,n} with tj = 1− ti

d(xi , xj)

• Then the error term is

1

n

n∑
i=1

|h(Φ(xi ), 1− ti )− yF
j(i)|
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How to encourage similarity between the empirical factual and

counterfactual distributions P̂F
Φ and P̂CF

Φ ?

• By controlling the discrepancy between them, namely given our

hypothesis class H and a loss function L, we have

discH(P̂F
Φ , P̂

CF
Φ ) = max

β,β′∈H

[
E

z∼P̂F
Φ

[L(β(z), β′(z))]− E
z∼P̂CF

Φ

[L(β(z), β′(z))]
]

• In this paper we only deal L being the square loss

• Discrepancy in the case of linear hypotheses class, namely

H ⊂ Rd+1, has a closed form formula.

• From now on we restrict the study to linear hypotheses.
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This gives rise to the following objective function

BH,α,γ(Φ, h) =
1

n

n∑
i=1

|h(Φ(xi ), ti )− yF
i |

+
γ

n

n∑
i=1

|h(Φ(xi ), 1− ti )− yF
j(i)|+

+αdiscH(P̂F
Φ , P̂

CF
Φ )
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Theoretical Motivation behind Algorithm 1

• The former analysis gave an intuition on the form of the objective

function BH,α,γ(Φ, h)

• Existence of a theoretical bound
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A Theoretical Bound
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A Theoretical Bound

• Let Φ be any representation function.

• Let H` = Rd+1 be the space of linear functions.

• Let β̂F (Φ) = arg min
β∈H`

E
(x,t,y)∼P̂F

Φ

[
L(β(x , t), y)

]
+ λ||β||22, the ridge

regression solutions for the factual empirical distributions.

• Define β̂CF (Φ) similarly

• The theorem then states that for both Q = PF and Q = PFC , we

have

c1

(
LQ(β̂F (Φ))− LQ(β̂CF (Φ))

)
≤ min

h∈H`

1

n

n∑
i=1

|h(Φ(xi ), ti )− yF
i |+ |h(Φ(xi ), 1− ti )− yF

j(i)|

+discH`
(P̂F

Φ , P̂
CF
Φ )

+
K0

n

∑
i :ti=1

d(xi , xj(i)) +
K1

n

∑
i :ti=0

d(xi , xj(i))

14



A Theoretical Bound

• Let Φ be any representation function.

• Let H` = Rd+1 be the space of linear functions.

• Let β̂F (Φ) = arg min
β∈H`

E
(x,t,y)∼P̂F

Φ

[
L(β(x , t), y)

]
+ λ||β||22, the ridge

regression solutions for the factual empirical distributions.

• Define β̂CF (Φ) similarly

• The theorem then states that for both Q = PF and Q = PFC , we

have

c1

(
LQ(β̂F (Φ))− LQ(β̂CF (Φ))

)
≤ min

h∈H`

1

n

n∑
i=1

|h(Φ(xi ), ti )− yF
i |+ |h(Φ(xi ), 1− ti )− yF

j(i)|

+discH`
(P̂F

Φ , P̂
CF
Φ )

+
K0

n

∑
i :ti=1

d(xi , xj(i)) +
K1

n

∑
i :ti=0

d(xi , xj(i))

14



A Theoretical Bound

• Let Φ be any representation function.

• Let H` = Rd+1 be the space of linear functions.

• Let β̂F (Φ) = arg min
β∈H`

E
(x,t,y)∼P̂F

Φ

[
L(β(x , t), y)

]
+ λ||β||22, the ridge

regression solutions for the factual empirical distributions.

• Define β̂CF (Φ) similarly

• The theorem then states that for both Q = PF and Q = PFC , we

have

c1

(
LQ(β̂F (Φ))− LQ(β̂CF (Φ))

)
≤ min

h∈H`

1

n

n∑
i=1

|h(Φ(xi ), ti )− yF
i |+ |h(Φ(xi ), 1− ti )− yF

j(i)|

+discH`
(P̂F

Φ , P̂
CF
Φ )

+
K0

n

∑
i :ti=1

d(xi , xj(i)) +
K1

n

∑
i :ti=0

d(xi , xj(i))

14



A Theoretical Bound

• Let Φ be any representation function.

• Let H` = Rd+1 be the space of linear functions.

• Let β̂F (Φ) = arg min
β∈H`

E
(x,t,y)∼P̂F

Φ

[
L(β(x , t), y)

]
+ λ||β||22, the ridge

regression solutions for the factual empirical distributions.

• Define β̂CF (Φ) similarly

• The theorem then states that for both Q = PF and Q = PFC , we

have

c1

(
LQ(β̂F (Φ))− LQ(β̂CF (Φ))

)
≤ min

h∈H`

1

n

n∑
i=1

|h(Φ(xi ), ti )− yF
i |+ |h(Φ(xi ), 1− ti )− yF

j(i)|

+discH`
(P̂F

Φ , P̂
CF
Φ )

+
K0

n

∑
i :ti=1

d(xi , xj(i)) +
K1

n

∑
i :ti=0

d(xi , xj(i))

14



A Theoretical Bound

The theorem states that for both Q = PF and Q = PFC , we have

c1

(
LQ(β̂F (Φ))− LQ(β̂CF (Φ))

)
≤ min

h∈H`

1

n

n∑
i=1

|h(Φ(xi ), ti )− yF
i |+ |h(Φ(xi ), 1− ti )− yCF

i |

+discH`
(P̂F

Φ , P̂
CF
Φ )

+
K0

n

∑
i :ti=1

d(xi , xj(i)) +
K1

n

∑
i :ti=0

d(xi , xj(i))

Which is close to

BH,α,γ(Φ, h) =
1

n

n∑
i=1

|h(Φ(xi ), ti )− yF
i |

+
γ

n

n∑
i=1

|h(Φ(xi ), 1− ti )− yF
j(i)|+

+αdiscH(P̂F
Φ , P̂

CF
Φ )

15



How to Choose the Representation function Φ ?

• Two approaches are proposed.

• First one is by directly re-weighting the features of X , namely

Φ(x) = Wx

where W is a diagonal matrix with wi ≥ 0,
∑

i wi = 1.

• One can then show that

discH`
(P̂F

Φ , P̂
CF
Φ ) ≈ ||W (p

∑
i :ti=1

xi − (1− p)
∑
i :ti=0

xi ||2

• Features that differ a lot between treatment groups will receive a

smaller weight
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• Second is with Neural Networks

• First dr layers learn the representation Φ

• The do layers learn h given t

• Given Φ, the discrepancy is calculated
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Experiments

• We don’t have the data !

• Need to simulate
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News Dataset

• The units xi are news items in NV , i.e. word counts from the NY

Times corpus, with n = 5000.

• The representation Φ(xi ) ∈ R50 is the topic distribution of xi ,

obtained using a LDA model with 50 topics.

• The treatment ti represents what device was used to read the news

item.

ti = 1 for mobile, ti = 0 for desktop.

• the factual outcome yF (xi ) ∈ R is the readers experience of xi
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The News Dataset

The outcomes are generated as follows

• Pick two centroids in topic space, z1 at random, and z0 is the

average of topic distribution

• The generated outcome of xi with treatment ti is then

y(xi ) = C (z(xi )
T z0 + tiz(xi )

T z1)

• Finally, we assume that the assignment of a news item xi to a device

ti is biased towards the preferred devices, i.e.

p(ti = 1 | xi ) =
eκz(xi )

T z1

eκz(xi )T z0 + eκz(xi )T z1

20
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Results

The authors compare

• The balanced linear regression model (BLR), i.e. Φ(x) = Wx .

• A neural network with 4 layers to learn the representation, and a

single linear output layer, BNN-4-0.

• A neural network with 2 layers to learn the representation, followed

by 2 ReLU layers and a single layer. (BNN-2-2)

• Different classical supervised learning regression algorithms like

linear regression, doubly robust linear regression, BART, etc..
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Any questions?
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Thank you!
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