
NEWTON-TYPE METHODS FOR THE FERMAT-WEBER

PROBLEM WITH WEIGHTED EUCLIDEAN NORMS

BENJAMIN PAUL-DUBOIS-TAINE

Abstract. This report studies Newton-type methods for solving the Fermat-

Weber. It extends the work by Görner and Kanzow (JOTA 170(1), 2016,
pp. 107–118) in that it allows for weighted Euclidean norms, and also con-

siders the box-constrained case. Theoretical results for well-definedness and

convergence are provided, and numerical tests are presented, comparing the
studied methods with standard algorithms such as FISTA.

1 Introduction

The Fermat-Weber problem consists in finding a point that minimizes the sum of
weighted distances to a given finite set of points. It reads

min
x∈Rn

f(x) :=

m∑
i=1

∥∥x− ai∥∥
where the points ai are given. It has been extensively studied in many different
settings, e.g by working with different distance measures, see [1] for references. This
paper studies the case of the weighted Euclidean norms.
Historically, the method used to solve find the minimizer of the Fermat-Weber with
Euclidean distance has been Weiszfeld’s algorithm, a fixed-point iteration method.
Although widely used, this algorithm has slow convergence, as it can be interpreted
as a gradient-type method with linear convergence, see for example [2].
In recent research, it was found that after a suitable initialization, Newton’s method
can be applied to the Fermat-Weber problem with Euclidean norm, leading to a
quadratic rate of convergence, see [1].
We show that this result can be generalized to the Fermat-Weber problem with
what we call the weighted Euclidean norm, leading to the same convergence rates.
Moreover, we also show that a similar initialization can be done for the Fermat-
Weber with box constraints, leading to the possible use of Newton-type methods.

The paper is organized as follows: In Section 2, we recall some known facts about
the Fermat-Weber problem and propose an approach to find a starting point for
Newton-type methods. In Section 3, we study the unconstrained Fermat-Weber
and show that Newton’s method can be used and yields quadratic convergence. Fi-
nally, in Section 4, we study the problem with box constraints, which leads to the
use of the projected Newton method. We provide numerical evidence to support
the theoretical results.

Key words and phrases. Fermat-Weber problem, Newton’s method, quadratic convergence,
superlinear convergence, convex optimization, subdifferential.

1

2 BENJAMIN PAUL-DUBOIS-TAINE

2 Preliminaries

For a function f : Rn → R we say that f is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (x, y ∈ Rn, λ ∈ (0, 1)).

The sublevel sets of f are defined as

Lf (c) := {x ∈ Rn | f(x) ≤ c} (c ∈ Rn).

We say that f is level-bounded if Lf (c) is bounded for all c ∈ Rn.
For a convex function f , the subdifferential at x ∈ Rn is defined as

∂f(x) :=
{
v ∈ Rn

∣∣ f(y)− f(x) ≥ vT (y − x) (y ∈ Rn)
}

We would also like to introduce the notion of weighted Euclidean norms. For the
remaining of the paper, we let H ∈ Rn×n be a symmetric positive definite matrix.
The following is then an inner product on Rn

〈x, y〉H := xTHy (x, y ∈ Rn)

The norm induced by this inner is what we call a weighted Euclidean norm, i.e.

‖x‖H :=
√
〈x, x〉H =

√
xTHx

The case of H = I, the identity matrix, gives the usual Euclidean norm. Finally,
observe that since H is symmetric positive definite, there exists a unique symmetric
positive definite matrix S ∈ Rn×n such that S2 = H. Moreover, we have

‖x‖H =
√
xTHx =

√
xTSSx =

√
〈Sx, Sx〉I = ‖Sx‖I (x ∈ Rn)

This property will be very useful later on.

With these definitions in mind, we are now ready to introduce the problem. Math-
ematically, the Fermat-Weber problem reads

min f(x) :=

m∑
i=1

ωi||x− ai|| subject to x ∈ X (1)

where the vectors a1, . . . , am ∈ Rn denote pairwise disjoint points, sometimes called
anchor points, X is a nonempty closed convex set, the scalars ωi > 0 are positive
weights, and ‖·‖ stands for some norm on Rn. We assume that the anchor points
are not collinear and that m ≥ 3.
We start with a few properties of the Fermat-Weber problem, without any assump-
tion on the norm.

Proposition 2.1. The following statements hold:
(a) The function f from from (1) is convex
(b) The problem (1) always has a solution

Proof. (a) f is convex as a sum of convex functions, i.e. the functions

x 7→ ωi
∥∥x− ai∥∥ (i = 1, . . . ,m)

The summands are, in fact, convex as positive multiples of a convex function (the
norm function) composed with an affine map, see [9, prop 2.1.1] and [9, prop 2.1.4].
(b) f is clearly level-bounded and continuous. Therefore its sublevel sets are closed.
Because X is also closed, this implies that f takes its minimum over X (by Weier-
strass’ theorem). �

FERMAT-WEBER PROBLEM 3

From now on, we write ‖·‖ for the usual Euclidean norm, i.e. ‖x‖ := ‖x‖I .
Now, we would like to study the Fermat-Weber in the more specific setting of the
weighted Euclidean norm. The Fermat-Weber problem then reads

min f(x) :=

m∑
i=1

ωi||x− ai||H subject to x ∈ X (2)

The case of H = I and X = Rn is the focus of [1]. In this paper, the authors
show how, after a suitable initialization, Newton’s method can be applied to the
problem to achieve quadratic convergence. In this section we show how a similar
initialization can be done in the more general setting of (2).
First, let’s point out an interesting of the problem (2).

Proposition 2.2. The solution of (2) is unique.

Proof. It suffices to show that f is strictly convex. Suppose this were not the case.
Then there exists x, y ∈ Rn, x 6= y and λ ∈ (0, 1) such that

f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y)

This means that
m∑
i=1

ωi||λ(x− ai) + (1− λ)(y − ai)||H = λ

m∑
i=1

ωi||(x− ai)||H + (1− λ)

m∑
i=1

ωi||(y − ai)||H

=

m∑
i=1

ωiλ||(x− ai)||H + ωi(1− λ)||(y − ai)||H

For this equality to hold, it is necessary that all summands be equal (because of
the triangle inequality property of the norm), i.e. we have

||λ(x− ai) + (1− λ)(y − ai)||H = λ||x− ai||H + (1− λ)||y − ai||H (i = 1, . . . ,m)

which we can rewrite

||S(λ(x−ai)+(1−λ)(y−ai))|| = λ||S(x−ai)||+(1−λ)||S(y−ai)|| (i = 1, . . . ,m)

We are here in the case of equality of the triangle inequality for the 2-norm. Hence
we have that S(x − ai) and S(y − ai) are linearly dependent. Hence there exists
αi ∈ R such that

S(x− ai) = αiS(y − ai)
which implies, since S is invertible,

x− ai = αi(y − ai)

Note that αi 6= 1 since x 6= y. Hence we get:

ai =
αi

αi − 1
y − 1

αi − 1
x

=
αi

αi − 1
y + (1− αi

αi − 1
)x

This implies that all the anchor points ai are on the same line passing the points x
and y. But this contradicts the assumption that the anchor points are not collinear.
Hence f is strictly convex which concludes the proof. �

4 BENJAMIN PAUL-DUBOIS-TAINE

To apply Newton-type methods, the underlying function needs to be (twice)
differentiable at each iteration. The function f from (2) is differentiable on Rn \{
a1, . . . , am

}
. As in [1], the approach is as follows: first check a criterion for the

anchor point with smallest function to be a solution of (2). If it is not, find a
descent direction at that point and start the algorithm at a point with smaller
function value. As long as the method is guaranteed to decrease the function value,
a point of non-differentiability will never be reached.
Before we present the criterion, we need one last assumption.

Assumption 2.3. No anchor point is on the boundary of X, i.e.

ai ∈ int(X) or ai 6∈ X (i = 1, . . . ,m)

Proposition 2.4. Consider the problem (2) and assume that Assumption 2.3 holds.
Determine p ∈

{
1, . . . ,m

}
such that f(ap) = min

i=1,...,m
f(ai).

(a) If ap 6∈ X, then the solution of (2) is not an anchor point.
(b) If ap ∈ X, then ap solves (2) if and only if∥∥∥∥∥∥

m∑
i=1,i6=p

ωi
S(ap − ai)
‖S(ap − ai)‖

∥∥∥∥∥∥ ≤ ωp

Proof. (a) By contradiction, assume that aj solves (2) for some aj ∈ X. Then, as
aj ∈ int(X) by Assumption 2.3, we have that aj is a local minimizer of f . Since f
is convex, this implies that aj is a global minimizer of f . By strict convexity of f ,
the global minimizer is unique. But then f(ap) > f(aj) which is a contradiction.

(b) If ap ∈ X, then since ap ∈ int(X), we have by [9, Theorem 2.2.1],

ap ∈ arg min
X

f ⇐⇒ 0 ∈ ∂f(ap) (3)

Writing

gi(x) = ωi
∥∥x− ai∥∥

H
= ωi

∥∥S(x− ai)
∥∥

we get

f(x) =

m∑
i=1

gi(x)

Now, a short computation shows that

∂gi(x) =


{
ωi

H(x−ai)
‖S(x−ai)‖

}
, if x 6= ai

ωiSB, if x = ai

where B =
{
y ∈ Rn| ‖y‖ ≤ 1

}
.

Since the subdifferential of a sum of finite-valued convex functions is simply the
sum of the subdifferentials of the functions ([9, Theorem 4.1.1]), we get that

∂f(ap) =

{
ωpSy +

m∑
i=1,i6=p

ωi
H(ap − ai)
‖S(ap − ai)‖

| ‖y‖ ≤ 1

}

FERMAT-WEBER PROBLEM 5

Now, suppose 0 ∈ ∂f(ap). Then there exists y ∈ Rn such that ‖y‖ ≤ 1 and

0 = ωpSy +

m∑
i=1,i6=p

ωi
H(ap − ai)
‖S(ap − ai)‖

Since S is positive definite, it is invertible and hence multiplying by S−1 we get

0 = ωpy +

m∑
i=1,i6=p

ωi
S(ap − ai)
‖S(ap − ai)‖

Then ∥∥∥∥∥∥
m∑

i=1,i6=p

ωi
S(ap − ai)
‖S(ap − ai)‖

∥∥∥∥∥∥ = ‖ωpy‖

= ωp ‖y‖
≤ ωp

Now we can prove the other direction. Suppose we have∥∥∥∥∥∥
m∑

i=1,i6=p

ωi
S(ap − ai)
‖S(ap − ai)‖

∥∥∥∥∥∥ ≤ ωp
Set

y = − 1

ωp

m∑
i=1,i6=p

ωi
S(ap − ai)
‖S(ap − ai)‖

Then ‖y‖ ≤ 1 and we have

m∑
i=1,i6=p

ωi
H(ap − ai)
‖S(ap − ai)‖

+ ωpSy =

m∑
i=1,i6=p

ωi
H(ap − ai)
‖S(ap − ai)‖

− ωpS
1

ωp

m∑
i=1,i6=p

ωi
S(ap − ai)
‖S(ap − ai)‖

=

m∑
i=1,i6=p

ωi
H(ap − ai)
‖S(ap − ai)‖

−
m∑

i=1,i6=p

ωi
H(ap − ai)
‖S(ap − ai)‖

= 0

Hence 0 ∈ ∂f(ap). We just proved that

0 ∈ ∂f(ap) ⇐⇒

∥∥∥∥∥∥
m∑

i=1,i6=p

ωi
S(ap − ai)
‖S(ap − ai)‖

∥∥∥∥∥∥ ≤ ωp
By (3), we are done.

�

Since f is convex, the directional derivative exists for all x ∈ Rn and in all
direction d ∈ Rn. Denote

K :=

{
i ∈
{

1, . . . ,m
}
| ai ∈ X

}
Now suppose that we have ap such that f(ap) = min

i∈K
f(ai) but we determined by

Proposition 2.4 that ap is not a minimizer of f over X. Then there exists a descent

6 BENJAMIN PAUL-DUBOIS-TAINE

direction of f at ap. One way to find one is to solve the following optimization
problem

min
d
f ′(ap, d) s.t. ‖d‖H = 1 (4)

Proposition 2.5. The vector

dp :=
−Rp
‖Rp‖H

with Rp :=

m∑
i=1,i6=p

ωi
ap − ai

‖ap − ai‖H
is a solution of (4).

Proof. First, observe that we can write:

f(x) = ωp ‖x− ap‖H + fp(x)

where

fp(x) =

m∑
i=1,i6=p

ωi
∥∥x− ai∥∥

H

Now, taking d ∈ Rn satisfying ‖d‖H = 1, we can define

α(t) = f(ap + td) = ωpt ‖d‖H + fp(a
p + td) = ωpt+ fp(a

p + td)

Observe that fp is differentiable at ap. Then the directional derivative of f at ap

in the direction of d is given by

f ′(ap, d) = α′(0) = ωp +∇fp(ap)T d
We would like to minimize this quantity. Observe that for all d such that ‖d‖H = 1,
we have

∇fp(ap)T d = ∇fp(ap)TH−1Hd
= 〈H−1∇fp(ap), d〉H
≥ −

∥∥H−1∇fp(ap)∥∥H ‖d‖H by C-S inequality

= −
∥∥H−1∇fp(ap)∥∥H

Now, setting

dp := − H−1∇fp(ap)
‖H−1∇fp(ap)‖H

we get

∇fp(ap)T dp = −∇fp(a
p)TH−1∇fp(ap)

‖H−1∇fp(ap)‖H

= − (H−1∇fp(ap))THH−1∇fp(ap)
‖H−1∇fp(ap)‖H

= −
∥∥H−1∇fp(ap)∥∥2H
‖H−1∇fp(ap)‖H

= −
∥∥H−1∇fp(ap)∥∥H

Hence the smallest directional derivative is attained at dp. Finally, observe that

∇fp(x) =

m∑
i=1,i6=p

ωi
H(x− ai)
‖x− ai‖H

for x 6= a1, ..., ap−1, ap+1, ..., am

FERMAT-WEBER PROBLEM 7

Hence, setting Rp = H−1∇fp(ap), we get the result. �

Since ap is not a minimum of f , we have that f ′(ap, dp) < 0. Hence f(ap+tdp) <
f(ap) for all t > 0 sufficiently small. Moreover, ap+tdp ∈ X for all t > 0 sufficiently
small as ap ∈ int(X). Such a step-size can be found by simple backtracking. Once
we find such a step-size, we can apply any algorithm that guarantees a decrease
in function value, since a point of non differentiability will then never be reached.
This is the focus of the next sections, where we first study the unconstrained case,
followed by the case of box constraints.

3 The Unconstrained Case

We now consider the case X = Rn. Observe that Assumption 2.3 is trivially
satisfied. The algorithm works as follows. First, we check whether the criterion
from Proposition 2.4 (b) holds. If it is satisfied then we are done. If not, we
determine a descent direction and a step-size and start Newton’s method from the
new generated point x0.

Algorithm 1 Newton’s method for the Fermat-Weber problem

(S0) Determine p ∈
{

1, ...,m
}

such that f(ap) = min
{
f(a1), ..., f(am)

}
. If ap is

such that ∥∥∥∥∥∥
m∑

i=1,i6=p

ωi
S(ap − ai)
‖S(ap − ai)‖

∥∥∥∥∥∥ ≤ ωp

then ap is the minimum. STOP.

(S1) Compute

dp :=
−Rp
‖Rp‖H

with Rp :=

m∑
i=1,i6=p

ωi
ap − ai

‖ap − ai‖H

and find a step-size tp > 0 such that f(ap + tpdp) < f(ap) by backtracking. Set
x0 := ap + tpdp, k := 0, and choose parameter ε > 0, ρ ∈ (0, 1), σ ∈ (0, 1/2).

(S2) If
∥∥∇f(xk)

∥∥ ≤ ε, then STOP.

(S3) Compute the Newton direction dk by solving ∇2f(xk)d = −∇f(xk).

(S4) Compute a step-size tk as the largest number in
{

1, ρ, ρ2, ...
}

such that

f(xk + tkd
k) ≤ f(xk) + σtk∇f(xk)T dk

(S5) Set xk+1 := xk + tkd
k, k ← k + 1, and go to (S2).

From now on, we refer to x0 as the starting point of Algorithm 1, as defined in
(S1).
We begin our convergence analysis by proving that the Hessians of f are posi-
tive definite on the level set Lf (x0), which we write L(x0) for convenience. This
guarantees that the steps (S3) and (S4) of the algorithm are well defined.

Proposition 3.1. For any x ∈ L(x0), the Hessian ∇2f(x) is positive definite.

8 BENJAMIN PAUL-DUBOIS-TAINE

Proof. First observe that f is twice continuously differentiable on an open set con-
taining the level set L(x0). This is because f is twice continuously differentiable
on Rn \

{
a1, ..., am

}
and for all x ∈ L(x0),

f(x) ≤ f(x0) < min
i=1,...,m

f(ai)

and hence x 6∈
{
a1, ..., am

}
.

Since f is convex, we have that the Hessian ∇2f(x) is positive semidefinite for all
x ∈ L(x0). Moreover, a quick calculation shows that

∇2f(x) =

m∑
i=1

ωi

‖x− ai‖3H

(∥∥x− ai∥∥2
H
H −H(x− ai)(x− ai)TH

)
Using the Cauchy-Schwartz inequality

dT∇2f(x)d =

m∑
i=1

ωi

‖x− ai‖3H

(∥∥x− ai∥∥2
H
dTHd− dTH(x− ai)(x− ai)THd

)
=

m∑
i=1

ωi

‖x− ai‖3H

(∥∥x− ai∥∥2
H
‖d‖2H − (dTH(x− ai))2

)
=

m∑
i=1

ωi

‖x− ai‖3H

(∥∥x− ai∥∥2
H
‖d‖2H − 〈d, x− a

i〉2H
)

≥
m∑
i=1

ωi

‖x− ai‖3H

(∥∥x− ai∥∥2
H
‖d‖2H −

∥∥x− ai∥∥2
H
‖d‖2H

)
= 0

for all d 6= 0 and equality holds only if the vectors d and x−ai are linearly dependent
(i = 1, ...,m). But that would imply that all the points a1, ..., am are on the same
line which is a contradiction. Hence we have strict inequality and therefore the
Hessians are positive definite. �

Corollary 3.2. There exist constants β ≥ α > 0 such that

α ‖d‖2 ≤ dT∇2f(x)d ≤ β ‖d‖2

for all d ∈ Rn and x ∈ L(x0).

Proof. Denote by λmax(x) and λmin(x) the largest and smallest eigenvalues, re-
spectively, of ∇2f(x), for x ∈ L(x0). It is easy to show that

λmin(x)dT d ≤ dT∇2f(x)d ≤ λmax(x)dT d

Now, observe that the mappings that associate x to λmin(x) and λmax(x) are
continuous functions on L(x0). Moreover, L(x0) is bounded and closed (since f
is continuous), i.e. compact. Hence λmin(.) and λmax(.) reach their infimum and
supremum on L(x0). Write

λmin := min
x∈L(x0)

λmin(x) and λmax := max
x∈L(x0)

λmax(x)

Then we get

λmind
T d ≤ dT∇2f(x)d ≤ λmaxdT d (x ∈ L(x0))

Which we can rewrite

λmin ‖d‖2 ≤ dT∇2f(x)d ≤ λmax ‖d‖2 (x ∈ L(x0))

FERMAT-WEBER PROBLEM 9

Setting α := λmin and β := λmax, we are done.
�

Observe that our algorithm uses the Armijo rule to find the step-size. This step-
size is not usually efficient in the sense of [10], but we show that in our case it
is.

Lemma 3.3. There exists a constant θ > 0 such that

f(xk + tkd
k) ≤ f(xk)− θ

(
∇f(xk)T dk

‖dk‖

)2

(k ∈ N).

Proof. Recall that ∇2f(xk)dk = −∇f(xk) for all k ∈ N. Hence, using Corollary
3.2, we get

−∇f(xk)T dk

‖dk‖2
=

(dk)T∇2f(xk)dk

‖dk‖2
≤ β (k ∈ N) (5)

. Now, consider k ∈ N. Define ϕk(t) := f(xk + tdk). Since f is continuous and
bounded from below, there exists a smallest t̂k > 0 such that

ϕ′k(t̂k) = σϕ′k(0).

Now, observe that ∇f is continuously differentiable on L(x0) which implies that
∇f is locally Lipschitz on L(x0). Since L(x0) is compact, we actually have that
∇f is Lipschitz continuous on L(x0).
Moreover, xk + tdk ∈ L(x0) for all t such that 0 < t ≤ t̂k, there exists a constant
L > 0 satisfying

σϕ′k(0) = ϕ′k(t̂k)

= ϕ′k(0) + (ϕ′k(t̂k)− ϕ′k(0))

= ϕ′k(0) + (∇f(xk + t̂kd
k)T dk −∇f(xk)T dk)

= ϕ′k(0) + (∇f(xk + t̂kd
k)−∇f(xk))T dk

≤ ϕ′k(0) +
∥∥∇f(xk + t̂kd

k)−∇f(xk)
∥∥
2

∥∥dk∥∥
2

by Cauchy-Schwartz inequality

≤ ϕ′k(0) + L
∥∥t̂kdk∥∥ ∥∥dk∥∥

= ϕ′k(0) + t̂kL
∥∥dk∥∥2

Which implies

t̂k ≥ −
(1− σ)ϕ′k(0)

L ‖dk‖2
(6)

We now distinguish two cases:
Case 1: tk = 1 in the Armijo rule. Then (5) implies

tk = 1 ≥ − 1

β

∇f(xk)T dk

‖dk‖2

10 BENJAMIN PAUL-DUBOIS-TAINE

and therefore we get

f(xk + tkd
k) ≤ f(xk) + σtk∇f(xk)T dk

≤ f(xk)− σ∇f(xk)T dk

β ‖dk‖2
∇f(xk)T dk (since ∇f(xk)T dk < 0)

= f(xk)− σ

β

(
∇f(xk)T dk

‖dk‖

)2

Case 2: tk < 1 in the Armijo rule. Then tk/ρ violates the Armijo condition. On
the other hand, t̂k and all step-sizes 0 < t ≤ t̂k satisfy the Armijo condition; hence,
it follows that

1

ρ
tk > t̂k

Using (6), we have (again observe that ∇f(xk)T dk < 0)

f(xk + tkd
k) ≤ f(xk) + σtk∇f(xk)T dk

< f(xk) + σρt̂k∇f(xk)T dk

≤ f(xk)− σρ (1− σ)ϕ′k(0)

L ‖dk‖2
∇f(xk)T dk

= f(xk)− σρ(1− σ)

L

(
∇f(xk)T dk

‖dk‖

)2

Taking θ := min
{
σ
β ,

σρ(1−σ)
L

}
, we are done.

�

Theorem 3.4. If Algorithm 1 does not terminate in step (S.0), then the sequence{
xk
}

generated by this method converges to the unique solution x∗ of the Fermat-
Weber problem (2). Furthermore, the local rate of convergence is quadratic, i.e.

there is a constant c > 0 such that
∥∥xk+1 − x∗

∥∥ ≤ c
∥∥xk − x∗∥∥2 for all k ∈ N

sufficiently large.

Proof. First, note that Corollary 3.2 gives

− ∇f(xk)T dk

‖∇f(xk)‖2 ‖dk‖2
=

(dk)T∇2f(xk)dk

‖∇2f(xk)dk‖2 ‖dk‖2
≥ (dk)T∇2f(xk)dk

‖∇2f(xk)‖2 ‖dk‖
2
2

≥ α

β
> 0

for all k ∈ N, assuming
∥∥∇2f(xk)

∥∥
2
≤ β holds (Note that this assumption is

acceptable since ∇2f is continuous on the compact set L(x0), and hence bounded).
Hence, the search directions satisfy an angle condition and the step-sizes are efficient
by Lemma 3.3. Using some standard results from [3], we get that the sequence

{
xk
}

converges to x∗.
Moreover, using Taylor’s theorem, we have that for all k ∈ N, there exists µk ∈ Rn
between xk and xk + dk such that

f(xk + dk) = f(xk) +∇f(xk)T dk +
1

2
(dk)T∇2f(µk)dk

which we can rewrite as (since ∇f(xk)T dk 6= 0 for all k)

f(xk + dk)− f(xk)

∇f(xk)T dk
= 1 +

1

2

(dk)T∇2f(µk)dk

∇f(xk)T dk

FERMAT-WEBER PROBLEM 11

Now,

1

2

(dk)T∇2f(µk)dk

∇f(xk)T dk
= −1

2

(dk)T∇2f(µk)dk

(dk)T∇2f(xk)dk

Recall that ∇2f(xk)dk = −∇f(xk). Moreover, limk→∞∇f(xk) = 0 and the Hes-
sian ∇2f is positive definite at x∗, hence we must have limk→∞ dk = 0. But then
this implies that limk→∞ µk = limk→∞ xk = x∗. Hence we get

lim
k→∞

1

2

(dk)T∇2f(µk)dk

∇f(xk)T dk
= lim
k→∞

−1

2

(dk)T∇2f(µk)dk

(dk)T∇2f(xk)dk
= −1

2

Which gives

lim
k→∞

f(xk + dk)− f(xk)

∇f(xk)T dk
=

1

2

Since σ ∈ (0, 1/2), that implies that for k large enough we have

f(xk + dk)− f(xk)

∇f(xk)T dk
≥ σ

which gives (since ∇f(xk)T dk < 0)

f(xk + dk) ≤ f(xk) + σ∇f(xk)T dk

That implies that eventually the full step-size is accepted (namely tk = 1 for k large
enough). Therefore the method eventually becomes the classic Newton’s method.
Since ∇2f is continuously differentiable on L(x0), it is also locally Lipschitz on
L(x0). This implies that our algorithm is locally quadratically convergent. �

Numerical Results for the Unconstrained Case

We now present numerical results for Algorithm 1. We use the same parameters as
in the original paper [1], namely ρ = 0.5, σ = 10−4 and ε = 10−5. We also used the
nonmonotone line search as suggested. The matrices we work with are of the form

H :=


1

1
. . .

1
θ

 ∈ Rn×n

where θ > 0. We are interested in the convergence of the algorithm when θ goes to
0 or infinity. We run the code for m = 10 and m = 100 anchor points. We do 100
test runs for each settings of the parameter. We consider that the algorithm fails
when the number of iterations is larger than 1000.

The first observation is that we are able to obtain the same results as [1] when
θ = 1. When θ becomes small, the average number of iterations stays similar,
between 2 and 3. When θ is larger, the average number of iterations goes up to
around 5.

12 BENJAMIN PAUL-DUBOIS-TAINE

Table 1. Numerical results for m = 10
n θ = 0.0001 θ = 0.001 θ = 0.01 θ = 0.1 θ = 1

2 av. iter. 3.91 3.61 3.08 3.28 3.31

nb of anchor solution 89 74 49 3 16

nb of failures 0 0 0 0 0

av. cpu time 0.0054 0.0021 0.0013 0.001 0.0011

3 av. iter. 3.38 3.28 3.27 3.27 3.37

nb of anchor solution 13 15 11 6 3

nb of failures 0 0 0 0 0

av. cpu time 0.0010 0.00097 9.59e-4 9.35e-4 8.75e-4

4 av. iter. 3.35 3.41 3.31 3.39 3.55

nb of anchor solution 5 3 2 0 1

nb of failures 0 0 0 0 0

av. cpu time 0.0011 0.0014 0.0017 0.0018 0.001

6 av. iter. 3.67 3.7 3.66 3.76 3.82

nb of anchor solution 0 0 0 0 0

nb of failures 0 0 0 0 0

av. cpu time 8.38e-4 0.0015 0.0021 0.0017 0.0015

8 av. iter. 3.89 3.94 3.85 3.87 4

nb of anchor solution 0 0 0 0 0

nb of failures 0 0 0 0 0

av. cpu time 0.0017 0.0017 0.0015 0.0015 0.0013

10 av. iter. 3.97 3.98 3.98 4.03 4.01

nb of anchor solution 0 0 0 0 0

nb of failures 0 0 0 0 0

av. cpu time 0.0013 0.0012 9.39e-4 0.001 0.001

FERMAT-WEBER PROBLEM 13

Table 2. Numerical results for m = 10
n θ = 10 θ = 100 θ = 1000 θ = 104

2 av. iter. 3.67 4.19 4.67 5.2

nb of anchor solution 21 41 70 85

nb of failures 0 0 0 0

av. cpu time 0.0011 0.0011 0.0012 0.0018

3 av. iter. 3.70 4.14 4.37 5.07

nb of anchor solution 8 21 59 85

nb of failures 0 0 0 0

av. cpu time 0.001 8.70e-4 0.0011 0.0016

4 av. iter. 3.79 4.07 4.46 5

nb of anchor solution 3 11 43 87

nb of failures 0 0 0 0

av. cpu time 0.001 9.77e-4 0.0011 0.0016

6 av. iter. 3.96 4.21 4.46 5.04

nb of anchor solution 0 5 33 75

nb of failures 0 0 0 0

av. cpu time 0.0014 0.0016 0.002 0.0025

8 av. iter. 4.01 4.30 4.55 5.13

nb of anchor solution 0 1 29 68

nb of failures 0 0 0 0

av. cpu time 0.0013 0.0013 0.0014 0.0016

10 av. iter. 4.04 4.22 4.41 4.92

nb of anchor solution 1 0 30 74

nb of failures 0 0 0 1

av. cpu time 8.94e-4 9.55e-4 0.001 0.0208

14 BENJAMIN PAUL-DUBOIS-TAINE

Table 3. Numerical results for m = 100
n θ = 0.0001 θ = 0.001 θ = 0.01 θ = 0.1 θ = 1

2 av. iter. 3.72 3.51 3.24 3.05 2.93

nb of anchor solution 19 8 1 4 0

nb of failures 2 0 0 0 0

av. cpu time 0.2208 0.0072 0.0082 0.0064 0.0056

3 av. iter. 2.97 2.96 2.99 2.91 2.86

nb of anchor solution 0 1 0 0 0

nb of failures 0 0 0 0 0

av. cpu time 0.0043 0.0083 0.0067 0.0081 0.0069

4 av. iter. 2.78 2.77 2.88 2.85 2.94

nb of anchor solution 0 0 0 0 0

nb of failures 0 0 0 0 0

av. cpu time 0.0052 0.0049 0.0048 0.0046 0.0053

6 av. iter. 2.98 2.98 2.98 2.99 3

nb of anchor solution 0 0 0 0 0

nb of failures 0 0 0 0 0

av. cpu time 0.005 0.0082 0.0061 0.0064 0.0055

8 av. iter. 3.04 3.07 3.11 3.1 3.27

nb of anchor solution 0 0 0 0 0

nb of failures 0 0 0 0 0

av. cpu time 0.0065 0.0065 0.0062 0.0056 0.0072

10 av. iter. 3.38 3.35 3.34 3.32 3.58

nb of anchor solution 0 0 0 0 0

nb of failures 0 0 0 0 0

av. cpu time 0.0076 0.0075 0.0072 0.007 0.0076

FERMAT-WEBER PROBLEM 15

Table 4. Numerical results for m = 100
n θ = 10 θ = 100 θ = 1000 θ = 104

2 av. iter. 3.08 3.5 4.18 4.40

nb of anchor solution 1 2 3 22

nb of failures 1 0 0 0

av. cpu time 0.0059 0.0114 0.0113 0.0067

3 av. iter. 3.06 3.62 4.09 4.70

nb of anchor solution 0 0 1 7

nb of failures 0 0 0 0

av. cpu time 0.0099 0.0118 0.0102 0.0098

4 av. iter. 3.1 3.66 4.09 4.65

nb of anchor solution 0 0 0 1

nb of failures 0 0 0 0

av. cpu time 0.0049 0.0062 0.0065 0.0073

6 av. iter. 3.1 3.7 4.09 4.65

nb of anchor solution 0 0 0 0

nb of failures 0 0 0 0

av. cpu time 0.0059 0.0078 0.0084 0.0093

8 av. iter. 3.26 3.77 4.14 4.53

nb of anchor solution 0 0 0 0

nb of failures 0 0 0 0

av. cpu time 0.0057 0.0075 0.0082 0.0094

10 av. iter. 3.6 3.88 4.19 4.68

nb of anchor solution 0 0 0 0

nb of failures 0 0 0 0

av. cpu time 0.009 0.0077 0.0077 0.0085

4 Box Constraints

In this section, we are interested in the problem

min f(x) :=
∑

ωi
∥∥x− ai∥∥

H
subject to x ∈ X =

{
x ∈ Rn | b ≤ x ≤ c

}
(7)

where b, c ∈ Rn and inequalities are component-wise. We assume that for all
j = 1, . . . , n, we have bj ≤ cj , so that X is non-empty. We would like to apply the
projected Newton method from [4] to the problem. Before we present the algorithm,
we define the projection onto the set X as

PX(x)j =


bj if xj < bj

xj if bj ≤ xj ≤ cj
cj otherwise

16 BENJAMIN PAUL-DUBOIS-TAINE

The algorithm is then as follows.

Algorithm 2 Projected Newton method for the box-constrained Fermat-Weber
problem

(S0) Determine p ∈ K such that f(ap) = min
i∈K

f(ai). If ap is such that∥∥∥∥∥∥
m∑

i=1,i6=p

ωi
S(ap − ai)
‖S(ap − ai)‖

∥∥∥∥∥∥ ≤ ωp

then ap is the minimum. STOP.

(S1) Compute

dp :=
−Rp
‖Rp‖H

with Rp :=

m∑
i=1,i6=p

ωi
ap − ai

‖ap − ai‖H

and find a step-size tp > 0 such that f(ap + tpdp) < f(ap) by backtracking. Set
x0 := ap + tpdp, k := 0, and choose parameter ε > 0, β ∈ (0, 1), σ ∈ (0, 1/2) and
a fixed positive definite matrix M ∈ Rn×n.

(S2) Denote
uk = |xk − PX(xk −M∇f(xk))|

and set εk = min {uk, ε}. Define the set Jk as

Jk :=

{
j ∈ {1, . . . , n} |

bj ≤ xkj ≤ bj + εk and ∂f(xk)
∂xj

> 0 or

cj − εk ≤ xkj ≤ cj and ∂f(xk)
∂xj

< 0

}
Set Dk ∈ Rn×n as Dk = (Hk)−1 where Hk is given by

Hk
ij =

{
0, if i 6= j, and either i ∈ Jk or j ∈ Jk
∂f(xk)
∂xixj

, otherwise.

and denote
pk = Dk∇f(xk).

(S3) Define the following function

xk(α) = PX(xk − αpk) (α ≥ 0)

Determine mk ∈ N so that mk is the first nonnegative integer m such that

f(xk)− f(xk(βm)) ≥ σ
(
βm

∑
j 6∈Jk

∂f(xk)

∂xj
pkj +

∑
j∈Jk

∂f(xk)

∂xj
(xkj − xkj (βm))

)
.

(S4) Set xk+1 = xk(βmk), k = k + 1, and go to (S2).

It is known from [4] that the projected Newton method decreases the value of the
objective function at each iteration. Hence starting at a value x0 ∈ X such that
f(x0) < f(ai) for all ai ∈ X ensures us that the algorithm will never reach a point
of non-differentiability (since each iterate of projected Newton algorithm remains in

FERMAT-WEBER PROBLEM 17

X). Therefore our algorithm is well-defined and inherits the convergence properties
of the projected Newton algorithm. We now explore these properties.

Proposition 4.1. Let x∗ be the solution of the Fermat Weber problem with box
constraints (7) and assume x∗ 6= ai for all i ∈

{
1, . . . ,m

}
. Moreover, assume that

∂f(x∗)

∂xj
> 0 if j ∈

{
j ∈

{
1, . . . , n

}
| x∗j = bj

}
∂f(x∗)

∂xj
< 0 if j ∈

{
j ∈

{
1, . . . , n

}
| x∗j = cj

}
Then the sequence

{
xk
}

converges to x∗ and the rate of convergence is quadratic.

Proof. This result follows from 3.2 and the fact that since f is smooth on a neigh-
borhood of x∗, the Hessian ∇2f is Lipschitz continuous on in that neighborhood.
We can then conclude with [4, Proposition 4]

�

Finally, observe that we did not specify a stopping criterion for Algorithm 2. This
is because the literature does not give a specific criterion in general, and in the next
subsection we explore the results with two different possible stopping criteria.

Numerical Results for Box Constraints

We would like to compare the projected Newton method to a projected accelerated
gradient method, FISTA [8]. The FISTA method in the special case of the Fermat-
Weber problem (7) goes as follows.

Algorithm 3 FISTA for box-constrained Fermat-Weber problem

(S0) Choose x0 ∈ Rn. Set y1 = x0, t1 = 1 and choose L, a Lipschitz constant of
∇f . Set k := 1
(S1) Do the following updates:

xk = PX(yk − 1

L
∇f(yk)),

tk+1 =
1 +

√
1 + 4t2k

tk+1
,

yk+1 = xk +

(
tk − 1

tk+1

)
(xk − xk−1)

(S2) Set k = k + 1, and go to (S1).

We compare both methods for m = 10 anchor points. We again work with
matrices of the form

H :=


1

1
. . .

1
θ

 ∈ Rn×n

18 BENJAMIN PAUL-DUBOIS-TAINE

where θ > 0. The Lipschitz constant used for FISTA is chosen to be

L = 2 ‖S‖
m∑
i=1

ωi

For each setting of the parameters, we generated 100 random instances of the
Fermat Weber problem and ran both algorithms on each of the instances.
We consider that the algorithms fail when the number of iterations exceeds 50,000.
We tested two different stopping criteria,

∥∥xk+1 − xk
∥∥ < 10−8 and

∣∣f(xk+1)− f(xk)
∣∣ <

10−8.

Table 5. Numerical results for stopping criterion
∥∥xk+1 − xk

∥∥ < 10−8

n θ = 0.0001 θ = 0.001 θ = 0.01 θ = 0.1 θ = 1

2 av. iter. Newton 4.57 4.36 3.70 3.59 3.44

nb of failures Newton 0 0 0 0 0

av. iter. fista 4,706 7,008 3,283 2,000 1,013

nb of failures fista 3 0 0 0 0

nb of anchor solution 9 13 4 3 0

4 av. iter. Newton 4.05 4.31 4.00 4.13 3.93

nb of failures Newton 0 0 0 0 0

av. iter. fista 10,563 11,185 6,009 3,080 1,948

nb of failures fista 0 1 0 0 0

nb of anchor solution 0 0 0 0 0

6 av. iter. Newton 4.1 4.03 4.17 4.04 4.04

nb of failures Newton 0 0 0 0 0

av. iter. fista 13,154 10,397 7,024 4,207 2,755

nb of failures fista 5 0 0 0 0

nb of anchor solution 0 0 0 0 0

8 av. iter. Newton 3.99 4.25 4.02 4.01 4.1

nb of failures Newton 0 0 0 0 0

av. iter. fista 10,287 10,767 9,363 4,536 3,437

nb of failures fista 1 1 0 0 0

nb of anchor solution 0 0 0 0 0

10 av. iter. Newton 3.96 4.07 3.97 4.03 3.94

nb of failures Newton 0 0 0 0 0

av. iter. fista 12,753 13,172 10,080 5,407 3,997

nb of failures fista 5 0 0 0 0

nb of anchor solution 0 0 0 0 0

FERMAT-WEBER PROBLEM 19

Table 6. Numerical results for stopping criterion
∥∥xk+1 − xk

∥∥ < 10−8

n θ = 10 θ = 100 θ = 1000 θ = 104

2 av. iter. Newton 3.83 4.27 4.03 4.40

nb of failures Newton 0 0 0 0

av. iter. fista 1,813 3,206 6,098 6,301

nb of failures fista 1 1 1 5

nb of anchor solution 2 11 11 9

4 av. iter. Newton 4.05 4.47 5.06 5.89

nb of failures Newton 0 0 0 0

av. iter. fista 5,074 15,733 11,509 15,499

nb of failures fista 0 1 34 39

nb of anchor solution 0 0 1 1

6 av. iter. Newton 4.15 4.81 5.3 5.97

nb of failures Newton 0 0 0 0

av. iter. fista 8,327 27,167 11,927 21,808

nb of failures fista 0 7 69 79

nb of anchor solution 0 0 0 16

8 av. iter. Newton 4.18 4.62 5.26 5.72

nb of failures Newton 0 0 0 0

av. iter. fista 10,927 32,762 20,694 20,372

nb of failures fista 0 25 88 88

nb of anchor solution 0 0 0 0

10 av. iter. Newton 4.01 4.44 5.11 5.21

nb of failures Newton 0 0 0 0

av. iter. fista 12,282 39,561 15,968 8,819

nb of failures fista 0 49 93 97

nb of anchor solution 0 0 0 0

20 BENJAMIN PAUL-DUBOIS-TAINE

Table 7. Numerical results for stopping criterion∣∣f(xk+1)− f(xk)
∣∣ < 10−8

n θ = 0.0001 θ = 0.001 θ = 0.01 θ = 0.1 θ = 1

2 av. iter. Newton 3.5 3.59 3.54 2.97 3.03

nb of failures Newton 0 0 0 0 0

av. iter. fista 1,317 994 862 540 448

nb of failures fista 2 2 1 0 1

nb of anchor solution 14 13 7 7 2

4 av. iter. Newton 3.55 3.49 3.33 3.48 3.40

nb of failures Newton 0 0 0 0 0

av. iter. fista 2,346 1,497 1,414 1,038 747

nb of failures fista 0 0 0 0 0

nb of anchor solution 0 0 0 0 0

6 av. iter. Newton 3.28 3.27 3.36 3.33 3.21

nb of failures Newton 0 0 0 0 0

av. iter. fista 2,586 1,530 1,266 1,256 852

nb of failures fista 0 0 0 0 0

nb of anchor solution 0 0 0 0 0

8 av. iter. Newton 3.2 3.21 3.29 3.31 3.23

nb of failures Newton 0 0 0 0 0

av. iter. fista 2,895 1,478 1,433 1,274 968

nb of failures fista 0 0 0 0 0

nb of anchor solution 0 0 0 0 0

10 av. iter. Newton 3.21 3.31 3.31 3.29 3.25

nb of failures Newton 0 0 0 0 0

av. iter. fista 3,030 1,746 1,603 1,481 1,117

nb of failures fista 0 0 0 0 0

nb of anchor solution 0 0 0 0 0

FERMAT-WEBER PROBLEM 21

Table 8. Numerical results for stopping criterion∣∣f(xk+1)− f(xk)
∣∣ < 10−8

n θ = 10 θ = 100 θ = 1000 θ = 104

2 av. iter. Newton 3.15 3.65 3.57 3.59

nb of failures Newton 0 0 0 0

av. iter. fista 901 1,380 2,372 2,436

nb of failures fista 1 0 1 0

nb of anchor solution 1 6 12 19

4 av. iter. Newton 3.62 3.84 4.47 4.62

nb of failures Newton 0 0 0 0

av. iter. fista 1,524 2,955 5,131 8,355

nb of failures fista 0 0 0 0

nb of anchor solution 0 1 0 1

6 av. iter. Newton 3.41 3.95 4.33 4.64

nb of failures Newton 0 0 0 0

av. iter. fista 1,920 4,248 6,811 8,983

nb of failures fista 0 0 0 0

nb of anchor solution 0 0 0 0

8 av. iter. Newton 3.41 3.78 4.45 4.83

nb of failures Newton 0 0 0 0

av. iter. fista 2,159 4,442 7,228 10,796

nb of failures fista 0 0 0 0

nb of anchor solution 0 0 0 0

10 av. iter. Newton 3.24 3.86 4.57 4.98

nb of failures Newton 0 0 0 0

av. iter. fista 2,318 4,707 8,480 12,088

nb of failures fista 0 0 0 0

nb of anchor solution 0 0 0 0

The results show that the projected Newton method beats a classic algorithm like
FISTA by several orders of magnitude. However, it is interesting to note that FISTA
seems to approach the optimal solution a lot faster than what the numerical results
show. Figure 1 shows that about 100 iterations are needed to reach a satisfying
solution.

22 BENJAMIN PAUL-DUBOIS-TAINE

0 20 40 60 80 100 120

Iteration

3.15

3.2

3.25

3.3

3.35
F

u
n

c
ti
o
n

 V
a
lu

e
10

4 Convergence for l-2 norm with box constraints

Projected Newton

FISTA

Figure 1. Typical example for n = 8, m = 10 and θ = 10

FERMAT-WEBER PROBLEM 23

References

[1] S. Görner and C. Kanzow: On Newtons Method for the FermatWeber Location Problem.
Journal of Optimization Theory and Applications 170, 107-118 (2016).

[2] A. Beck and S. Sabach Weiszfelds method: old and new results. Journal of Optimization

Theory and Applications 164, 140 (2015)
[3] J. Nocedal and S.J. Wright:Numerical Optimization, 2nd edn. Springer, New York (2006)

[4] D. P. Bertsekas: Projected Newton Methods for Optimization Problems with Simple Con-

straints, SIAM Journal on Control and Optimization, 20(2):221246, 1982
[5] M. Schmidt, D. Kim and S. Sra: Projected Newton-type methods in machine learning, Opti-

mization for Machine Learning, MIT Press (2011).

[6] A. Beck,First-Order Methods in Optimization, Society for Industrial and Applied Mathemat-
ics (2017).

[7] S. Adrian, S. Lewis and M.L. Overton, Nonsmooth optimization via quasi-newton meth-

ods, Mathematical Programming, 141(1-2):135163 (2013).
[8] A. Beck and M. Teboulle A fast iterative shrinkagethresholding algorithm with application

to wavelet-based image deblurring, in IEEE Int. Conf. Acoust., Speech, Signal Process, pp.

693696 (2009).
[9] J. B. Hiriart-Urruty and C. Lemarechal: Fundamentals of Convex Analysis, Springer,

Berlin (2001)
[10] W. Warth and J. Werner: Effiziente Schrittweitenfunktionen bei unrestringierten Opti-

mierungsaufgaben. Computing 19, 5972 (1977)

McGill University, Department of Mathematics, Student ID : 260673170

E-mail address: benjamin.paul-dubois-taine@mail.mcgill.ca

