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Abstract

We prove that the linear coupling algorithm of Allen-Zhu and Orecchia [2014]
preserves its accelerated convergence rate even if it only has oracle access to
noisy gradients satisfying a strong growth condition. Acceleration has already been
attained with such an oracle, however our analysis yields a slightly more transparent
proof by avoiding the standard analysis of Nesterov’s accelerated method.

1 Introduction

Most modern machine learning algorithms are trained using stochastic first-order optimization
methods. This is because deterministic methods, like gradient descent (GD), have prohibitively large
iteration costs as each iteration requires full gradient computation – an issue when working with
huge datasets. Theoretically, stochastic methods require many more iterations to converge to an
optimal solution than their deterministic counterparts. This may potentially offset the benefit enjoyed
by stochastic methods of reduced computational complexity per iteration. Empirically however,
stochastic gradient descent (SGD) seems to enjoy the same iteration complexity as GD on a large
variety of tasks. This has led researchers to try and exploit the structure of modern machine learning
models to explain this behavior. One key observation is that with the increase of computational
capability in the past few years, many machine learning models used in practice are able to interpolate
the data, namely fit the data perfectly. This is true in particular for deep neural networks as shown by
Zhang et al. [2016]. Vaswani et al. [2018] show that finite sum models that interpolate the data satisfy
a weak growth condition (WGC), and in the same work that SGD obtains rates matching that of GD
under weak growth. This result offers an explanation of the good performance of SGD in practice.

With stochastic rates matching the deterministic rates under this weak growth condition, it is natural
to ask if there exists stochastic algorithms whose rates match the rates of Nesterov’s accelerated GD
in the presence of interpolation. Although acceleration (without variance-reduction) when conditions
on the gradient noise are guaranteed has been thoroughly studied (see the work by Cohen et al.
[2018] and references therein), this remains an open question when only interpolation/weak growth
is guaranteed. However, Vaswani et al. [2018] laid the first stone towards solving this by proving that
Nesterov’s accelerated method retains its optimal convergence rate even if it uses noisy gradients
satisfying the strong growth condition (SGC) – a stronger condition than weak growth which was
previously studied by Schmidt and Roux [2013]. The proof of this result mimics the analysis from
the deterministic setting, which is known to be notoriously opaque.

Our work is primarily motivated by the ultimate goal of obtaining accelerated rates under the practical
assumption of weak growth. Such a result would indicate that the weak growth condition captures
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the essence of why stochastic methods perform surprisingly well when applied to many machine
learning problems. We analyse a stochastic variant of the linear coupling algorithm proposed by
Allen-Zhu and Orecchia [2014]. The analysis of linear coupling essentially provides a framework for
combining the analyses of algorithms which satisfy two key properties. (We will elaborate on this in
Subsection 2.3 where we outline the high level analysis of our main result.) It is conceivable that
this analytic framework is more amenable to proving accelerated convergence rates in the stochastic
setting, especially considering the comparatively challenging analysis of Nesterov’s method which
was the previous approach to obtaining acceleration under SGC.

Main result. This is indeed true under the strong growth assumption. We show that a stochastic
variant of the linear coupling algorithm enjoys an accelerated rate of convergence. Although accelera-
tion under strong growth is not a new result, our hope is that this framework will also prove to be
useful under WGC (for more on this, see Section 4) since it offers a fairly simple analysis.

The paper is organized as follows. In Subsection 1.1 we present some related work in the field
of stochastic first-order methods in machine learning. In Section 2 we lay out the assumptions
underlying our analysis, present the algorithm, and outline the approach of our analysis. In Section 3
we prove a slightly more general version of our main result. Finally we conclude by a brief discussion
of ideas for future work.

1.1 Related Work

When optimizing a smooth convex function, it is well-known that the error of classical GD is O(1/k)
after k iterations. However, such a convergence rate is not optimal for first-order methods as shown
by Nesterov [2004]. A modified version of gradient descent proposed by Nesterov [1983], known
as Nesterov’s accelerated GD, achieves the optimal convergence rate of O(1/k2). One drawback
of this algorithm is it involves an intricate analysis and lacks intuition. This makes it challenging
to modify and extend to different settings. In recent years there has been a surge of research that
propose simplified analyses of Nesterov’s acceleration or define new accelerated methods (i.e. with a
O(1/k2) rate) in order to illuminate the key ideas of acceleration [Allen-Zhu and Orecchia, 2014, Su
et al., 2014, Bubeck et al., 2015, Krichene et al., 2015, Diakonikolas and Orecchia, 2019]. Our work
extends this latter line of research by augmenting the linear coupling algorithm due to Allen-Zhu and
Orecchia [2014] to propose a clearer accelerated method in the stochastic setting.

In the stochastic setting (where the method uses random estimates of the gradient), SGD achieves only
a (expected) convergence rate of O(1/

√
k) for smooth and convex functions [Nesterov, 2004], which

is far worse than the theoretical guarantees of its non stochastic counterpart. A thoroughly studied
special case is the finite-sum setting where the objective function is the average of (finitely-many)
smooth convex functions and the stochastic gradient at each iteration is the gradient of one of these
functions chosen uniformly at random. In such a case, one can attain a O(1/k) convergence rate
with SGD with a technique known as variance-reduction [Johnson and Zhang, 2013, Shalev-Shwartz
and Zhang, 2013, Schmidt et al., 2017]. By using a variance-reduced method together with the
meta-algorithm from Lin et al. [2015] one can already achieve a convergence rate of O((log k)/k2),
only a O(log k) factor away from the optimal accelerated rate. Allen-Zhu [2017] showed how to
achieve a O(1/k2) convergence rate by combining variance-reduction ideas with the linear coupling
algorithm. However, these methods is that they need to sporadically compute deterministic gradients,
and/or require the finite-sum structure assumption.

More closely related to this work is the study of stochastic first-order methods when the model being
optimized can interpolate1 the data [Schmidt and Roux, 2013, Vaswani et al., 2018, Ma et al., 2018].
In particular, Vaswani et al. [2018] show that, under a strong notion of interpolation known as the
strong growth condition, Nesterov’s accelerated GD achieves a O(1/k2) convergence rate. Our work
is closely related to this latter result, since we propose a stochastic version of linear coupling, which
possesses a simpler analysis than Nesterov’s accelerated GD and achieves the same accelerated rate
under identical conditions.

1In the finite-sum case, this means that the global minimum of the objective function in the finite sum
setting is also a global minimum of each individual component function. This idea can be formally extended to
non-finite-sum objective functions in different ways as Vaswani et al. [2018] show.
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2 Algorithm and Results

In this section, we describe the set of assumptions we will be working with, followed by a formal
statement of our result. We will then provide a high-level description of the main ideas of our analysis.

2.1 Preliminaries

Notation and standard assumptions. Let f : Rd → R be a convex and differentiable function.
We will assume that f is smooth, i.e.∇f is L-Lipschitz continuous for some constant L > 0. Further,
we assume that f reaches a minimum at x∗. Unless stated otherwise, we will use ‖·‖ to refer to the
Euclidean norm on Rd (i.e. ‖x‖ =

√
〈x, x〉).

Bregman divergence. The linear coupling algorithm makes use of “mirror steps”. These require
the choice of a regularizer w : Rd → R that is differentiable and 1-strongly convex with respect to
‖·‖ (i.e. f − 1

2‖·‖
2 is convex). The Bregman divergence (w.r.t. w) is then defined as

Dw(y, x) = w(y)− w(x)− 〈∇w(x), y − x〉.

Noisy gradient oracle. We assume access to a noisy, unbiased, gradient oracle. Formally, for any
x ∈ Rd and any random vector u ∈ Rd, we have access to an unbiased estimate∇f(x, u) of∇f(x),
that is, Eu

[
∇f(x, u)

]
= ∇f(x). The expectation is taken with respect to the distribution from which

the vector u is sampled from.

The strong growth condition. The previous assumptions are standard for studying first-order
stochastic methods. We now make a crucial assumption on the norm of the stochastic gradients,
known as the strong growth condition (SGC), which was previously studied by Schmidt and Roux
[2013]. The function f is said to satisfy the SGC with constant ρ if for any x ∈ Rn we have

Eu
[
‖∇f(x, u)‖2

]
≤ ρ ‖∇f(x)‖2 . (2.1)

We emphasize that this assumption is strong and not often satisfied in practice. In particular, in the
finite sum setting, SGC reads

Ei
[
‖∇fi(x)‖2

]
≤ ρ ‖∇f(x)‖2 .

This implies that if for some x∗ ∈ Rd, ∇f(x∗) = 0, then also ∇fi(x∗) = 0 for all i. In the
case where each component fi is convex, it implies that the global minimizer of f is also a global
minimizer of each individual component function fi, so that the model is expressive enough to
perfectly fit, or interpolate, the data.

2.2 Stochastic Linear Coupling

In Algorithm 1 we formally describe the stochastic linear coupling algorithm. Each iteration of
Algorithm 1 can be seen as combining an SGD step (line 7) with a stochastic mirror descent (SMD)
step (line 8). The statement of the algorithm is almost identical to the deterministic linear coupling
algorithm of Allen-Zhu and Orecchia [2014], except for two differences. First of all, it uses noisy
gradients instead of full gradients. Moreover, the gradient descent step is taken with respect to the
euclidean norm, whereas the linear coupling algorithm as stated by Allen-Zhu and Orecchia [2014]
can handle arbitrary norms. Some discussion about the extension of our results to arbitrary norms
can be found in Section 4.

Finally, one can show that if the regularizer w is chosen to be w(x) = 1
2 ‖x‖

2, Algorithm 1 is
identical to the accelerated SGD from Vaswani et al. [2018], as line 8 then reduces to

zk+1 ← zk − αk+1∇f(xk+1, uk+1)

In that sense our approach provides a more general way of finding stochastic first-order algorithms
that yields accelerated rates under SGC.
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Algorithm 1 Stochastic Linear Coupling
Input: A initial point x0 ∈ Rn, a gradient step size η > 0, a balancing constant C > 0, and the
number of iterations T .

1: y0 ← x0
2: z0 ← x0
3: k ← 0
4: for k ← 0 to T − 1 do
5: αk+1 ← k+2

2C , and τk ← 1
αk+1C

= 2
k+2 .

6: xk+1 ← τkzk + (1− τk)zk
7: yk+1 ← xk+1 − η∇f(xk+1, uk+1)

8: zk+1 ← arg minz∈Rn

{
Dw(z, zk) + 〈αk+1∇f(xk+1, uk+1), z − zk〉

}
9: end for

10: return yT .

Our main result is that Algorithm 1 enjoys an accelerated rate of convergence under strong growth.
Theorem 2.1. Let T > 0, and let yT ∈ Rd be as given by Algorithm 1 with initial point x0 ∈ Rd,
step size η := 1/Lρ, and balancing constant C := Lρ2 = ρ

2η(1−ηLρ/2) . Moreover, let x∗ ∈
arg minx∈Rd f(x) and let Θ > 0 be such that Dw(x∗, x0) ≤ Θ. Then,

E[f(yT )]− f(x∗) ≤ 4ΘLρ2

(T + 1)2
.

Remark 2.2. Assuming a weaker form of strong growth yields a similar result as Theorem 2.1. If
there are non-negative constants ρ, σ such that Eu

[
‖∇f(x, u)‖2

]
≤ ρ‖∇f(x)‖2 + σ, then

E[f(yT )]− f(x∗) ≤ 4ΘLρ2

(T + 1)2
+
(

(Lρη)
2

+ 1
) 2σ(T + 2)

3L2ρ4
.

Asymptotically, this matches the rate obtained by Vaswani et al. [2018] under the same assumption.

The proof of Theorem 2.1 is in Section 3. We proceed to highlight the main ideas of our analysis.

2.3 Main idea of the analysis

The linear coupling algorithm provides an analytic framework for combining the analyses of gradient
descent and mirror descent. Loosely first order algorithm provided the existence of two things: 1) an
iterative first order algorithm which guarantees a “descent property” in terms of ‖∇f(x)‖2, and 2) an
iterative first order algorithm which can relate the per-round regret2 to the ‖∇f(x)‖2 term from the
descent property. It turns out that gradient descent guarantees property 1) whereas mirror descent
guarantees property 2).

Our idea is based off of the fact that the analysis of linear coupling is not dependent on its subroutines
actually being exactly gradient descent and mirror descent respectively. Therefore, in the stochastic
setting, we simply need to find the right set of algorithms and assumptions which will allow us to
obtain (in expectation) properties 1) and 2). From there, we can proceed with the linear coupling
analysis – with some tweaks to the step sizes. It turns out that under the strong growth assumption,
stochastic gradient descent and stochastic mirror descent have similar guarantees as their deterministic
counterparts. These observations drive the rest of the analysis.

3 Analysis

Theorem 2.1 using the weaker form of strong growth stated in Remark 2.2. Formally, we assume that
there are non-negative constants ρ, σ such that

Eu
[
‖∇f(x, u)‖2

]
≤ ρ ‖∇f(x)‖2 + σ. (3.1)

2Regret is a notion of performance in online convex optimization which is the standard performance measure
for mirror descent. By averaging iterates on can translate regret guarantees to classical convergence rates.
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Moreover, throughout this section we denote by Ek the expectation conditioned on the noise
u1, . . . , uk from Algorithm 1. So, Ek treats u1, . . . , uk as constants and uk+1, . . . , uT as random.

As mentioned before, the main insight behind the analysis of linear coupling is the fact that the
per-iteration guarantees of gradient and mirror descent are complementary. Linear coupling combines
the complementary key steps of the analyses of gradient and mirror descent.

The main step of the analysis for gradient descent shows that the per iteration decrease of the objective
value is proportional to the current squared gradient norm. The next lemma shows that this holds (in
expectation) for stochastic gradient descent under strong growth.
Lemma 3.1 (Descent lemma). Let k ≥ 0 and let xk+1 and yk+1 be defined as in Algorithm 1. Then,

Ek[f(yk+1)− f(xk+1)] ≤ −η
(

1− ηLρ

2

)
‖∇f(xk+1)‖+

η2σL

2

Proof. Since f is L-smooth and from the definition of yk+1 we have

f(yk+1) ≤ f(xk+1) + 〈∇f(xk+1), yk+1 − xk+1〉+
L

2
‖xk+1 − yk+1‖2

= f(xk+1)− η〈∇f(xk+1),∇f(xk+1, uk+1)〉+
Lη2

2
‖∇f(xk+1, uk+1)‖2.

Taking expectation (conditioned on u1, . . . , uk) and using (3.1) yields the desired inequality.

The key step in the analysis of mirror descent bounds the additional regret incurred at each iteration
by the squared norm of the gradient plus a penalty related to how far the mirror step went (measured
by the regularizer w). An analogue of this property is stated below for stochastic mirror descent.
Lemma 3.2 (Mirror descent guarantee, see Allen-Zhu and Orecchia [2014, Appendix B.2]). Let
k ≥ 0 and let zk and zk+1 be given by line 8 in Algorithm 1. Then for any x ∈ Rd,

αk+1〈∇f(xk+1), zk − x〉 ≤
α2
k+1

2
Ek[‖∇f(xk+1, uk+1)‖2] +Dw(x, zk)− Ek[Dw(x, zk+1)].

Lemma 3.1 and Lemma 3.2 provide the analogues of the descent property and the mirror descent
regret guarantee in the stochastic setting under strong growth. To show the accelerated convergence
rate we will combine both guarantees in a manner similar to the analysis of the deterministic linear
coupling method by Allen-Zhu and Orecchia [2014], .

The following lemma, whose proof we defer to Appendix A shows how one can combine Lemma 3.1
and Lemma 3.2 by using a coupling parameter τk, so that the expected change in objective value
from round to round telescopes in an appropriate manner. This will yield our main result by summing
over all iterations.
Lemma 3.3 (Coupling Lemma). The iterates of Algorithm 1 satisfy the following inequality:

α2
k+1CEk[f(yk+1)]− (α2

k+1C − αk+1)f(yk)

≤ αk+1f(x∗) + Ek[Dw(x∗, zk+1)−Dw(x∗, zk)] + (CLη2 + 1)
α2
k+1

2
σ.

The proof of Theorem 2.1 essentially sums the inequality given by Lemma 3.3 over all of iterations.

Proof of Theorem 2.1. First, note that

α2
kC =

(k + 2− 1)2

4C2
C =

(k + 2)2

4C2
C − k + 2

2C
+

1

4C
= α2

k+1C − αk+1 +
1

4C
.

Using the above and summing the inequality from Lemma 3.3 for k ∈ {0, . . . , T − 1} and by taking
expectations we have

α2
TCE[f(yT )] +

1

4C

T−1∑
k=1

E[f(yk)]

≤
T∑
k=1

αkf(x∗) +Dw(x∗, z0)− E[Dw(x∗, zT )] +
σ

2

(
CLη2 + 1

) T−1∑
k=0

α2
k+1.
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Now, by the choice of αk we have
∑T
k=1 αk = T (T+3)

4C and
∑T
k=1 α

2
k ≤

(T+2)3

3C2 . This together with
the non-negativity of Bregman divergence and since x∗ is a minimizer of f , we have

(T + 1)2

4C
E[f(yT )] ≤ T (T + 3)− T + 1

4C
f(x∗) + Θ +

(
CLη2 + 1

)σ(T + 2)3

6C2
.

Multiplying the above by 4C
(T+1)2 and using that T+2

T+1 ≤ 2 and that η = 1/Lρ we have

E[f(yT )]− f(x∗) ≤ 4ΘC

(T + 1)2
+
(
CLη2 + 1

)4σ(T + 2)

6C2

=
4ΘLρ2

(T + 1)2
+
(

(Lρη)2 + 1
)4σ(T + 2)

6L2ρ4
.

4 Future Work

Non-Euclidean stochastic acceleration. One nice feature of the original linear coupling algorithm
by Allen-Zhu and Orecchia [2014] is that its analysis follows seamlessly even if f is smooth with
respect to an arbitrary norm instead of the euclidean norm. However, the SGD descent lemma
(Lemma 3.1) we used heavily relies on the fact that the euclidean norm is induced by the euclidean
inner-product (and that its dual norm is itself). Allen-Zhu [2017] studies stochastic acceleration on
non-euclidean settings using ideas from the linear coupling algorithm. However, the techniques used
rely on bounding the variance of the noise with variance reduction techniques, and we were not able
to extend these results to the strong growth case. An interesting direction of future research would be
to extend stochastic linear coupling to the non-Euclidean setting, or even to study the effectiveness of
different accelerated stochastic first-order methods such as the one by Cohen et al. [2018] when used
with functions that satisfy strong (or weak) growth conditions.

Constrained stochastic optimization.

Acceleration under WGC. One may attempt to use SGD and SMD in the linear coupling frame-
work again under the weaker WGC assumption in an attempt to recover the accelerated rate. An issue
here is that deriving a “descent lemma” is not as straightforward under WGC. Moreover, even if a
descent property were somehow attainable under WGC, it is not clear how to relate the upper bound
from Lemma 3.2 to the ‖∇f(x)‖2 term from the descent property without the use of strong-growth.
We did not spend too much time in this direction – it is possible these ideas are fruitful.

Acceleration under SGC for strongly-convex functions. Our results hold when f is smooth and
convex. Another common assumption in the optimization literature is strong-convexity. According to
Allen-Zhu and Orecchia [2014], an analysis of their linear coupling algorithm can be made to attain the
optimal linear rate in the strongly-convex setting by replacing the standard mirror descent guarantee
(Lemma 3.2) with the corresponding analysis for regret minimization of strongly-convex functions
(e.g. Hazan et al. [2007], Shalev-Shwartz and Singer [2007] ). A snag is that the main analysis on the
instantaneous regret term from these papers is identical to that of Lemma 3.2. Therefore, it appears as
if more work is needed to derive an accelerated rate for linear coupling in the strongly-convex setting.
We did not spend much time exploring this, but it seems that it should work out given enough time.
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A Proof of Lemma 3.3

Proof of Lemma 3.3. Let k ≥ 0 and define γ := η(1− ηLρ/2). From Lemma 3.1 we have

‖∇f(xk+1)‖2 ≤ 1

γ
Ek[f(xk+1)− f(yk+1)] +

Lη2

2γ
σ.

Define Θk := Dw(x∗, zk)−Ek[Dw(x∗, zk+1)]. Starting from the mirror descent guarantee given by
Lemma 3.2 and setting C := ρ/2γ = ρ

2η(1−ηLρ/2) , we have

αk+1〈∇f(xk+1), zk − x∗〉

≤
α2
k+1

2
Ek[‖∇f(xk+1, uk+1)‖2] + Θk

≤
α2
k+1ρ

2
‖∇f(xk+1)‖2 +

α2
k+1σ

2
+ Θk

≤
α2
k+1ρ

2γ

(
Ek[f(xk+1)− f(yk+1)] +

Lη2

2
σ
)

+
α2
k+1σ

2
+ Θk

= α2
k+1CEk[f(xk+1)− f(yk+1)] +

α2
k+1σ

2

(
CLη2 + 1

)
+ Θk.

Re-arranging and using that Ek[f(xk+1)] = f(xk+1) (since xk+1 depends only of the randomness
up to iteration k), we get

α2
k+1CEk[f(yk+1)] ≤ α2

k+1Cf(xk+1) +
α2
k+1σ

2

(
CLη2 + 1

)
+ Θk + αk+1〈∇f(xk+1), x∗ − zk〉.

(A.1)

This is the key point of the coupling of the mirror and gradient descent steps, and it shows us the
value we need to put into τk so that we get the desired bound. From the definition of the iterates in
Algorithm 1, we have xk+1 = τkzk+(1−τk)yk. Re-arranging gives zk = xk+1 + 1−τk

τk
(xk+1−yk).

This together with the gradient inequality from convexity yields

αk+1〈∇f(xk+1), x∗ − zk〉 = αk+1
1− τk
τk
〈∇f(xk+1), yk − xk+1〉+ αk+1〈∇f(xk+1), x∗ − xk+1〉

≤ αk+1
1− τk
τk

(f(yk)− f(xk+1)) + αk+1(f(x∗)− f(xk+1))

=
(αk+1

τk
− αk+1

)
(f(yk)− f(xk+1)) + αk+1(f(x∗)− f(xk+1))

= (α2
k+1C − αk+1)(f(yk)− f(xk+1)) + αk+1(f(x∗)− f(xk+1))

= (α2
k+1C − αk+1)f(yk)− α2

k+1Cf(xk+1) + αk+1f(x∗),

where in the second to last step we used that τk is defined in a way such that αk+1/τk = α2
k+1C.

Finally, plugging the above into (A.1) yields the desired inequality.
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